
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

19970311 013 
DISSERTATION 

NEW MOTION PLANNING AND REAL-TIME 
LOCALIZATION METHODS USING PROXIMITY FOR 

AUTONOMOUS MOBILE ROBOTS 

by 

Mahmoud A. Wahdan 

September 1996 

Thesis Advisor: Yutaka Kanayama 

Approved for public release; distribution is unlimited. 

EiO •£"'JA*-ii3£'& B:«..---^ 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 

September 1996 
3. REPORT TYPE AND DATES COVERED 

Doctoral Dissertation 
4. TITLE AND SUBTITLE 

NEW MOTION PLANNING AND REAL-TIME LOCALIZATION 
METHODS USING PROXIMITY FOR AUTONOMOUS MOBILE 
ROBOTS 

5.1 

6. AUTHOR(S) 

Mahmoud A. Wahdan 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING ORGANIZATION 

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

The views expressed in this dissertation are those of the author and do not reflect the official policy or 
position of the Department of Defense or the United States Government. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

One of the most difficult theoretical problems in robotics—motion planning for rigid body robots- 
must be solved before a robot can perform real-world tasks such as mine searching and processing. This 
dissertation proposes a new motion planning algorithm for an autonomous robot, as well as the method and 
results of implementing this algorithm on a real vehicle. 

This dissertation addresses the problem of safely navigating an autonomous vehicle through free space 
of a two dimensional, world model with polygonal obstacles from a start configuration (position/ 
orientation) to a goal configuration using smooth motion under the structure of a layered motion planning 
approach.   The approach   proposes several new concepts, including v-edges and directed v-edges, and 
divides the motion planning problem of a rigid body vehicle into two subproblems: (i) finding a global path 
using Voronoi diagrams and for a given start and goal configurations planning an optimal global path; the 
planned path is a sequence of directed v-edges, (ii) planning a local motion from the start configuration, 
using the aforementioned global path. The problem of how to design a safe and smooth path, is effectively 
solved by the steering function method and proximity. Another problem addressed here is how to make a 
smooth transition when the vehicle gets closer to an intersection of two distinct boundaries. 

14. SUBJECT TERMS 

Robotics, autonomous vehicles, global path planning, local motion planning, 
steering function, polygon tracking, self localization. 

15. NUMBER OF PAGES 

p4D 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE 

13. This dissertation also presents a robust algorithm for the vehicle to continually eliminate its positional 
uncertainty while executing missions. This functionality is called self-localization which is an essential 
component of model-based navigation for indoor applications. This algorithm is based on the two- 
dimensional transformation group. Through this method, the robot can minimize its positional uncertainty, 
make safe and reliable motions, and perform useful tasks in a partially known world. 

All of the proposed algorithms were implemented on an autonomous mobile robot Yamabico-11 to 
confirm our theoritical algorithms. 

SECURITY CLASSIFICATION OF THIS PAGE 

UNCLASSIFIED 



Approved for public release; distribution is unlimited 

NEW MOTION PLANNING AND REAL-TIME LOCALIZATION METHODS 
USING PROXIMITY FOR   AUTONOMOUS MOBILE ROBOTS 

Mahmoud A. Wahdan 
Colonel, Egyptian Army 

B.S., Military Technical College, Egypt, 1977 
M.S., Cairo Universty, Egypt, 1990 

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE 

from the 

Author: 

NAVAL POSTGRADUATE SCHOOL 
September 1996 

 Mflforo^y/ (Ay A U/ w 
Mahmoud A. Wahdan 

Approved by: 

I VCA    K^'^^'1t>^> 
Yutakfe Kanayama 
Professor of Computer Science 

C. Thomas 4tfu 
Associate Professor of Computer 
Science 

y^vt^. ̂ _ 

Fariba Fahroo 
Assistant Professor of Mathematics 

Xiaoping Yun 
Associate Professor of Electrical 
and Computer Engineering 

Craig Rasmpssen 
Assistant Professor of Mathematics 

Cyntnia Irvine 
Assistant Professor of Computer Science 

Ted Lewis, Chairman, Department of Computer Science 

in 



IV 



ABSTRACT 

One of the most difficult theoretical problems in robotics-motion planning for 

rigid body robots-must be solved before a robot can perform real-world tasks such 

as mine searching and processing. This dissertation proposes a new motion planning 

algorithm for an autonomous robot, as well as the method and results of implementing 

this algorithm on a real vehicle. 

This dissertation addresses the problem of safely navigating an autonomous 

vehicle through free space of a two dimensional, world model with polygonal obstacles 

from a start configuration (position/orientation) to a goal configuration using smooth 

motion under the structure of a layered motion planning approach. The approach 

proposes several new concepts, including v-edges and directed v-edges, and divides the 

motion planning problem of a rigid body vehicle into two subproblems: (i) finding 

a global path using Voronoi diagrams and for a given start and goal configurations 

planning an optimal global path; the planned path is a sequence of directed v-edges, 

(ii) planning a local motion from the start configuration, using the aforementioned 

global path. The problem of how to design a safe and smooth path, is effectively 

solved by the steering function method and proximity. Another problem addressed 

here is how to make a smooth transition when the vehicle gets closer to an intersection 

of two distinct boundaries. 

This dissertation also presents a robust algorithm for the vehicle to continually 

eliminate its positional uncertainty while executing missions. This functionality is 

called self-localization which is an essential component of model-based navigation for 

indoor applications. This algorithm is based on the two-dimensional transformation 

group. Through this method, the robot can minimize its positional uncertainty, make 

safe and reliable motions, and perform useful tasks in a partially known world. 

All of the proposed algorithms were implemented on an autonomous mobile 

robot Yamabico-11 to confirm our theoritical algorithms. 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION  1 

A. BACKGROUND  1 

B. PROBLEM STATEMENT  4 

1. Definitions  4 

2. Problem Description      7 

3. Assumptions  8 

C. PREVIOUS WORK   .  8 

1. Motion Planning      8 

a. Roadmap and Cell Decomposition Methods .... 8 

b. Potential Field Methods      9 

c. Other Methods  10 

2. Self-Localization  11 

D. ORGANIZATION OF DISSERTATION     13 

II. LAYERED MOTION PLANNING  15 

A. INTRODUCTION  15 

B. MOTION PLANNER STRUCTURE  16 

1. Mission Planner  16 

2. World Model  16 

3. Global Path Planner  17 

4. Local Motion Planner  18 

5. Self-Localization Module  18 

C. METHODOLOGY  19 

III. POLYGONS, SUBPOLYGONS AND IMAGES  21 

A. GENERAL DEFINITIONS     21 

B. POLYGON  23 

C. SUBPOLYGONS  31 

vn 



D. THE ROBOT'S SPACE   .  34 

E. IMAGES „ „ . 36 

1. Visibility from Point to Polygon  37 

2. Type of an Image from a Point to a Convex Polygon ... 41 

3. The Image Type Algorithm      44 

a. Proof of Correctness of the Algorithm ....... 46 

b. Analysis of the Worst-Case Time Complexity of 

the Algorithm  47 

F. FINDING AN IMAGE ON A NONCONVEX POLYGON   ... 48 

IV.     PATH CLASS REPRESENTATION USING VORONOI DIA- 

GRAMS  51 

A. PATH CLASSES  52 

B. THE LOCUS APPROACH TO PROXIMITY PROBLEMS: V- 

ORONOI DIAGRAM  54 

1. Definitions  54 

2. Voronoi Diagram of Polygon  55 

C. POLYGONAL WORLD AND PATH CLASSES  58 

1. Directed v-edge  59 

2. Canonical Paths and Directed v-edges Sequences  62 

3. Connectivity Graph  66 

4. Path Class Representation  68 

5. Finding the Best Path Class  70 

6. Following the Path Class '  71 

D. PATH CLASSES AND SUBPOLYGONS  72 

E. ADVANTAGES OF PATH CLASS REPRESENTAION USING 

DIRECTED V-EDGES SEQUENCES     78 

V.       POLYGON TRACKING MOTION  81 

A.       PROBLEM STATEMENT  81 

vm 



B. GENERAL CONCEPTS OF THE STEERING FUNCTION . . 83 

C. CLEARANCE DEFINITION  86 

D. COMPARING PATH ALTERNATIVES  87 

1. Safety Cost Function  88 

2. Smoothness Cost Function  89 

E. COMBINING STEERING FUNCTIONS  90 

F. EDGE-CONVEX VERTEX TRACKING  91 

G. CONVEX VERTEX TRACKING  96 

H.       EDGE-CONCAVE VERTEX TRACKING  100 

I.        SIMULATION RESULT ANALYSIS  104 

VI. SAFE LOCAL MOTION PLANNING WITH SMOOTHING 115 

A. PROBLEM STATEMENT  115 

B. SAFETY CLEARANCE CONCEPT  116 

C. GENERALIZED SAFETY COST FUNCTION  117 

D. PLANNING APPROACH  118 

E. THE USEFULNESS OF DIRECTED V-EDGES SEQUENCE 

TO LOCAL MOTION PLANNING  121 

F. DIFFERENT TYPES OF POLYGON TRACKING IN DIRE- 

CTED V-EDGES SEQUENCE  123 

G. LOCAL MOTION PLANNING ALGORITHM      129 

H.       SIMULATION RESULT ANALYSIS  135 

VII. SELF LOCALIZATION USING MODEL-SONAR FEATURE - 

CORRESPONDENCE  147 

A. INTRODUCTION  147 

B. GOAL AND FEATURES OF SELF LOCALIZATION METHOD 148 

C. TWO DIMENSIONAL TRANSFORMATION  150 

1.         Definitions  150 

D. LINEAR FEATURE EXTRACTION  152 

IX 



1. Calculation of Global Sonar Return  152 

2. Generalized Least Squares Linear Fitting  154 

E. PRINCIPLES OF REDUCING UNCERTAINTY  155 

F. SELF LOCALIZATION ALGORITHM  156 

1. Position Information of Natural Landmarks  159 

2. Position Estimation of Natural Landmarks by Sonar and 

Odometry  160 

3. Odometry Correction  161 

VIII. IMPLEMENTATION OF LOCAL MOTION PLANNING AND 

SELF LOCALIZATION ALGORITHMS  163 

A. GEOMETRIC MODEL OF A ROBOT'S WORLD  163 

1. World Model Data Structure  163 

2. Path Class Data Structure  165 

3. Image Data Structure  165 

B. POLYGON TRACKING EXPERIMENTAL RESULTS  166 

C. LOCAL MOTION PLANNING EXPERIMENTAL RESULTS  . 166 

D. SELF LOCALIZATION EXPERIMENTAL RESULTS  167 

1.         Single Landmark Experiment      167 

IX. YAMABICO-11 HARDWARE AND SOFTWARE ARCHITEC- 

TURE  175 

A. HARDWARE SYSTEM OF YAMABICO-11  175 

1. IV-SPARC-33 CPU  175 

2. SONARS  178 

a. Sonar Grouping  179 

b. Sonar Range Calculation  180 

c. Sonar Interrupt Control  181 

B. MML-11 SOFTWARE ARCHITECTURE  181 

1.         System Architecture  182 



2. Interrupt-driven Subsystems  . 183 

3. RealTime Operating System  183 

4. User Program  183 

5. MOTION CONTROL ARCHITECTURE  184 

6. Motion Control Subsystem  185 

C.        MML-11 LANGUAGE SPECIFICATION  . 186 

1. Data Structures  187 

2. User Function Specification  189 

X. CONCLUSIONS  199 

XI. FUTURE RESEARCH  201 

APPENDIX A. NORMALIZING ANGLES      203 

APPENDIX B. LEAST SQUARES LINEAR FITTING  205 

APPENDIX C. USER PROGRAM EXAMPLES  209 

LIST OF REFERENCES     217 

INITIAL DISTRIBUTION LIST      223 

XI 



XI1 



LIST OF TABLES 

I. Relation between smoothness and safety cost function values for 

polygon tracking (I)     104 

II. Relation between smoothness and safety cost function values for 

polygon tracking (II) „     105 

III. Relation between smoothness and safety cost function values for 

polygon tracking (III)     105 

IV. Relation between smoothness and safety cost function values for 

polygon tracking (IV)     105 

V. Relation between smoothness and safety cost function values for 

polygon tracking (V)   . .     106 

VI. Relation between smoothness and safety cost function values for 

motion planning (I)     136 

VII. Relation between smoothness and safety cost function values for 

motion planning (II)     137 

VIII. Relation between smoothness and safety cost function values for 

motion planning (III)     137 

IX. Relation between smoothness and safety cost function values for 

motion planning (IV)     138 

X. Relation between smoothness and safety cost function values for 

motion planning (V)     138 

XI. Relation between smoothness and safety cost function values for 

motion planning (VI)     139 

XII. Representation of path class data structure     165 

XIII. Representation of image data structure     165 

XIV. Odometry error correction (30 cm/sec)     168 

XV. Average odometry error correction (30 cm/sec)     168 

Xlll 



XVI.    Sonar position     188 

xiv 



LIST OF FIGURES 

1. Robot's world space .  5 

2. A world and paths  6 

3. Layered motion planning structure      16 

4. Motion planner/execution architecture  17 

5. Simple and non-simple polygon (I)      24 

6. Simple and non-simple polygon (II)  24 

7. Direction between Two Points  ................... 26 

8. Interior and exterior angle of a simple polygon  26 

9. Convex and concave simple polygons  27 

10. Convex set  28 

11. Cross product of vectors  28 

12. Using the cross product to determine how consecutive line seg- 

ments VQVI and UJui turn at a point v\      29 

13. Interior and exterior of a simple polygon  31 

14. Concave polygon      32 

15. Subpolygons decomposition of concave polygon      33 

16. Concave polygon and its subpolygons (I)  33 

17. Concave polygon and its subpolygons (II)      34 

18. Robot's world space  35 

19. Image on object  36 

20. Images on world  37 

21. Visibility from point p to convex polygon B (I)      38 

22. Classifications of vertex u, of polygon B with respect to a seg- 

ment pvl  38 

23. Visibility from point p to convex polygony B (II)  40 

24. Image of point p lies on an edge of convex polygon B  42 

xv 



25. Image of point p lies on vertex u, of convex polygon B    ..... 43 

26. Image type      44 

27. Correctness of image type algorithm  47 

28. Image of a point p on cw concave polygon B  48 

29. Image of a point p on ccw concave polygon B  48 

30. A world and paths    .  52 

31. Images on a polygon  56 

32. Voronoi diagram of a ccw polygon  56 

33. Voronoi diagram of a cw polygon (I)      57 

34. Voronoi diagram of a cw polygon (II)  57 

35. Polygonal world  58 

36. Voronoi diagram of polygonal world (I)  59 

37. Voronoi diagram of polygonal world (II)      60 

38. Defining directed v-edge for the same directed boundaries {ccw 

polygons)      61 

39. Defining directed v-edge for different directed boundaries [cw 

and ccw)  61 

40. Paths and canonical paths  62 

41. Interpretation of canonical path as directed v-edges sequence . . 64 

42. Directed v-edges sequence (I)      65 

43. Directed v-edges sequence (II)  66 

44. Basic connectivity graph of a polygonal world (I)      67 

45. Basic connectivity graph of a polygonal world (II)  67 

46. Polygonal world (I)  68 

47. Augmented connectivity graph of a polygonal world (I)  69 

48. Polygonal world (II)      70 

49. Augmented connectivity graph of a polygonal world (II)    .... 71 

xvi 



50. Problem 1: initial orientation of a vehicle is different from the 

direction of a motion  73 

51. Problem 2: directed v-edge of a concave polygon  73 

52. Problem 3:  Voronoi diagram of polygonal world consisting of 

two polygons (ccw polygon inside cw polygon boundary)   .... 74 

53. Solution of probelm 1: Voronoi diagram of a subpolygonal world 74 

54. Basic connectivity graph of a subpolygonal world  75 

55. Augmented connectivity graph of a subpolygonal world  75 

56. Solution of problem 2: up and down directed v-edges (I)    . . . . 76 

57. Solution of problem 2: up and down directed v-edges (II) .... 77 

58. Solution of problem 3: world and augmented connectivity graph 79 

59. Directed v-edges sequence (left turn is required)  80 

60. Directed v-edges sequence (no turn is required)      80 

61. ccw tracking direction      82 

62. cw tracking direction  82 

63. Block diagram for polygon tracking  83 

64. Geometrical concepts of steering function  85 

65. Robot's safety clearance (I)      86 

66. Non-linear safety clearance function  87 

67. Robot's safety clearance (II)  88 

68. First and second images  90 

69. ccw tracking in Edge-Convex Vertex Tracking Mode  92 

70. cw tracking in Edge-Convex Vertex Tracking Mode  93 

71. Calculate safety clearance function of ccw tracking  94 

72. Calculate safety clearance function of cw tracking  95 

73. Different trajectories corresponding to their safety cost function 

values in Edge-Convex Vertex Tracking Mode  96 

74. ccw tracking of Vertex Tracking Mode      97 

xvii 



75. cw tracking of Vertex Tracking Mode  98 

76. Different trajectories corresponding to their safety Cost Func- 

tion Values in Vertex Tracking Mode  100 

77. ccw tracking in Edge-Concave Vertex Tracking Mode  101 

78. cw tracking in Edge-Concave Vertex Tracking Mode  102 

79. Different trajectories corresponding to their safety Cost Func- 

tion Values in Edge-Concave Vertex Tracking Mode  103 

80. Different Trajectories of ccw Motion Corresponding to their Safety 

Cost Function Values for ccw polygon (I)  107 

81. Different Trajectories of ccw Motion Corresponding to their Safety 

Cost Function Values for ccw polygon (II)  108 

82. Different Trajectories of ccw Motion Corresponding to their Safety 

Cost Function Values for ccw polygon (III)  109 

83. Different Trajectories of cw Motion Corresponding to their Safety 

Cost Function Values for ccw polygon (IV)  110 

84. Different Trajectories of ccw Motion Corresponding to their Safety 

Cost Function Values for ccw polygon (V)  Ill 

85. Different Trajectories of cw Motion Corresponding to their Safety 

Cost Function Values for cw polygon (VI)      112 

86. Different Trajectories of cw Motion Corresponding to their Safety 

Cost Function Values for ccw polygon (VII)  113 

87. Block diagram for motion planning  116 

88. Tracking with exact Voronoi boundary  116 

89. Safety clearance  117 

90. Tracking with safety clearance  117 

91. Safe and unsafe paths  119 

92. Discontinuity where two distinct Voronoi boundary intersect   . . 120 

93. Both left and right images are on edges  121 

xvin 



94. Directed v-edges sequence to local motion planning (left turn is 

required)     122 

95. Directed v-edges sequence to local motion planning (no turn is 

required)     123 

96. Left and right current and next polygons are not identical in 

directed v-edges sequence E     124 

97. Left current and next left polygons are identical but right current 

and next right polygons are not identical in directed v-edges 

sequence E (I)     125 

98. Left current and next left polygons are identical but right current 

and next right polygons are not identical in directed v-edges 

sequence E (II)     125 

99. Left current and next left polygons are identical but right current 

and next right polygons are not identical in directed v-edges 

sequence E (III)     126 

100. Left current and next left polygons are identical but right current 

and next right polygons are not identical in directed v-edges 

sequence E (IV)     126 

101. Left current and next left polygons are not identical but right 

current and next right polygons are identical in directed v-edges 

sequence E (I)     127 

102. Left current and next left polygons are not identical but right 

current and next right polygons are identical in directed v-edges 

sequence E (II)     127 

103. Left current and next left polygons are not identical but right 

current and next right polygons are identical in directed v-edges 

sequence E (III)     128 

xix 



104. Left current and next left polygons are not identical but right 

current and next right polygons are identical in directed v-edges 

sequence 3 (IV)  128 

105. Left turn is required (I)  131 

106. Left turn is required (II)  131 

107. Right turn is required (I)  132 

108. Right turn is required (II)  132 

109. No turn is required (I)  133 

110. No turn is required (II) .  133 

111. No turn is required (III)  134 

112. No turn is required (IV)  134 

113. No turn is required (V)  135 

114. World of motion planning  136 

115. Motion Planning and Execution result (I)  140 

116. Motion Planning and Execution result (II)  141 

117. Motion Planning and Execution result (III)  142 

118. Motion Planning and Execution result (IV)  143 

119. Motion Planning and Execution result (V)  144 

120. Motion Planning and Execution result (VI)  145 

121. Positioning of rigid body robot as configuration  148 

122. Sonar configuration in global coordinate      153 

123. Least square linear fitting procedure  154 

124. Robot's localization error (I) . . '.  156 

125. Object configurations  157 

126. Robot's localization error (II)  158 

127. Global position of sonar return      160 

128. Matching algorithm  162 

129. Real-time localization correction  162 

xx 



130. Representation of world data structure   .  164 

131. Yamabico-11 Polygon Tracking and Execution Result (I)   .... 169 

132. Yamabico-11 Polygon Tracking and Execution Result (II) .... 170 

133. Yamabico-11 Local Motion Planning and Execution Results (I) . 171 

134. Yamabico-11 Local Motion Planning and Execution Result (II) . 172 

135. Yamabico-11 Local Motion Planning and Execution Result (III) 173 

136. Odometry Correction Experimental using Single Landmark ... 174 

137. Autonomous mobile robot, Yamabico-11      176 

138. Block diagram of Yamabico-11 hardware architecture  177 

139. Yamabico-11 ultrasonic sonar configuration  178 

140. Yamabico-11 sonar hardware architecture  179 

141. MML-11 software conceptual architecture  182 

142. MML-11 motion control software architecture  184 

143. A configuration represents a line or a circle  190 

144. The line tracking function  193 

145. The backward line tracking with stopping function  194 

146. The backward line tracking with no stopping function  194 

147. Fitted line  206 

148. End points  208 

xxi 



xxn 



ACKNOWLEDGMENTS 

For four long years I have devoted myself to seeking the truth in the sea of 

knowledge at the Naval Postgraduate School. If I was successful in achieving this 

goal, my own effort was not the only factor. There were many people behind this 

endeavor. They deserve my appreciation. 

First and foremost, I would like to present my gratitude to my sister Nadia 

Wahdan. She went through and shared all my frustration and excitement during 

these years. Without her encouragement and unconditional support, I wouldn't have 

accomplished this work. 

I also wish to express my deepest gratitude to Professor Yutaka Kanayama 

whose support, guidance, and enthusiasm have been a constant inspiration to me. His 

door was always open for me and for any other student needing help. His patience 

and positive attitude were invaluable to this research. 

I am deeply indebted to my committee for their patience and wisdom. The 

comments of Professor Thomas Wu and Professor Cynthia Irvine regarding my writ- 

ing and scientific approach were exceptionally helpful. Professor Xiaoping Yun pro- 

vided valuable comments on the overall layout of this dissertation and made insightful 

suggestions to improve my understanding of the robotic field. Professor Craig Ras- 

mussen generously provided me with badly needed mathematical guidance as well as 

proofreading the manuscript numerous times. From my deepest heart, I would like 

to thank Professor Fariba Fahroo for her support and encouragement in hard times. 

With her support and help, I achieved the highest goal in my whole life. 

I appreciate the continuous encouragement and support of the members of 

the Yamabico research group, Khaled Morsy (Egypt), Ed Mays (USA), and Vasilios 

Karamanlis (Greece). 

I would like to thank my best friends Nabil Khalil, Ashraf Mamdouh and his 

wife, and Khaled Morsy and his wife for their positive attitude before and after my 

xxin 



final defense. This gave me lots of courage in preparing for my defense. Best wishes 

to all. 

xxiv 



I.        INTRODUCTION 

A.  BACKGROUND 
Answering the question "Where am I?" is one of the most elementary tasks 

for any natural or artificial creature moving through the real world in a goal-oriented 

fashion. Not only human beings but also animals solve this problem easily and with 

astonishing accuracy by combining visual, acoustic, and other kinds of perceptions, 

with vague knowledge about the traveled distance, and spatial knowledge which was 

gathered and memorized at previous times. To understand and model the mecha- 

nisms underlying this skill is one of the challenges for researchers and engineers who 

want to build autonomous mobile robot vehicles. In the field of robotics, the ultimate 

goal is to design an autonomous robot that is artificially intelligent. Recent advances 

in computer processing speed have encouraged the development of increasingly capa- 

ble mobile robot platforms. Making progress toward autonomous robots is of major 

practical interest in a wide variety of application domains including manufacturing, 

construction, waste managemnent, space exploration, undersea work, assistance for 

the disabled, and medical surgery [49]. Due to the characteristics of reprogrammabil- 

ity and multifunctionality, robots have been used in factories to perform a variety of 

tasks including material handling, welding, painting, assembly, etc. In addition, it is 

expected that by the end of this century robots will be able to perform very complex 

tasks such as construction and maintenance in factories and households [45]. The 

popular trend in current military applications is to accomplish the required mission 

with a minimum loss of life. Consequently, many government-sponsored efforts are 

underway to build systems for fighting fires, handling ammunition, transporting ma- 

terial, conducting underwater search and inspection operations, mine searching and 

other dangerous tasks now performed by humans [20]. 

Many of the above tasks require motion of the robot in order to carry out any 

task.   Thus there is a problem known as the motion planning problem.   Although 



the research in robot motion planning can be traced back to the late 1960's, most 

of the theoretical breakthroughs and practical understandings of the issue have been 

achieved only in the last decade, and much of the problem is still outstanding. The 

problem of motion planning for rigid body robots has been considered one of the most 

difficult theoretical problems in robotics and, obviously, must be solved for a robot 

to perform real-world tasks such as mine searching and processing. The difficulty of 

motion planning can best be summarized by J. C. Latombe [49] as follows: 

At first glance motion planning looks relatively simple, since humans 
deal with it with no apparent difficulty in their everyday lives. In fact, as 
is also the case with perception, the elementary operative intelligence that 
people use unconsciously to interact with their environment ... turns out to 
be extremely difficult to duplicate using a computer-controlled robot. It is 
true that some naive methods can produce apparently impressive results, but 
the limitations of these methods quickly become obvious. The unaware reader 
will be surprised by the amount of nontrivial mathematical and algorithmic 
techniques that are necessary to build a reasonably general and reliable motion 
planner. 

The level of complexity of the problem of motion planning again depends on 

how the robot is being modeled and what physical constraints are imposed on it. 

Motion planning rather than path planning is used, because vehicles considered 

here are not points, but rigid bodies. In path planning, the result is a series of 

positions which must be followed by the vehicle. In motion planning, not only is 

position important, but also the orientation of the vehicle are important as it follows 

a path. 

For an autonomous vehicle, planning motions that avoid known and unknown 

objects in its environment is the most fundamental functionality. Given an arbitrary 

mission, for instance, mine searching and clearance, motion planning is an inevitable 

subproblem that needs to be solved. 

Generating collision-free motion of acceptable quality is one of the main con- 

cerns in robotics. A typical robot presents an arm manipulator with a fixed base op- 

erating in three-dimensional space, or a mobile vehicle operating in two-dimensional 



Space, or a combination of the two. Whatever form it takes, the robot is expected 

to move purposely and safely in an often complex environment filled with known or 

unknown obstacles. 

Central to the success of robotic systems is the availability of intelligent robot 

planning systems. With such a system, a robot accepts a goal statement or a task 

specification (instead of the details of the robot actions) and then it can generate a 

sequence of robot-level operations. By following these operations, the goal can be 

accomplished. 

The general motion planning problem for a system of autonomous vehicles 

can be stated as follows: Given (1) an initial state of the vehicles, (2) a desired final 

state of the vehicles, and (3) any constraints on allowable motions, find a collision- 

free motion of the vehicles from the initial state to the final state that satisfies the 

constraints. 

Also, for a mobile robot, maintaining exact position information poses a ma- 

jor problem. A key capability of a mobile robot operating in an indoor environment 

is localization, i.e. determination of its current position and orientation (posture). 

Automated guided vehicles, as used for transportation tasks in factories, still need a 

network of physical guidelines buried in, or attached to, the floor [17]. Recent devel- 

opments permit leaving the guideline for short maneuvers, for example at crossings 

or docking stations. Increased flexibility can be achieved by free-navigating vehicles 

using dead-reckoning and artificial or natural landmarks for localization. Results of 

related techniques are reported in [15, 19]. 

Because of its simplicity and low cost, dead-reckoning is the most common- 

ly used localization technique. However, because of error accumulation in dead- 

reckoning systems, posture errors grow without bound unless they are reduced by 

reference measurements. For this purpose, passive sensors like cameras [46] as well 

as active sensors like sonar [51] and infrared imaging systems [12] have been applied. 

Natural landmarks, such as walls and edges, or artificial landmarks, such as corner 



cubes and retro-reflective strips are used as absolute references. 

Navigation which is a fundamental requirement of autonomous mobile robots, 

can be broadly separated into two distinct approaches: reference and dead reckoning. 

Reference guidance refers to navigation with respect to a coordinate frame based on 

visible external landmarks. Dead reckoning refers to navigation based on odometry, 

inertial guidance, or some other "self-contained" sensing. Dead reckoning usually 

provides the vehicle with an estimate of its position. Its disadvantage is that the po- 

sition error grows without bound unless an independent reference is used periodically 

to reduce the error. Reference guidance has the advantage that position errors are 

bounded, but detection of external references or landmarks and real-time position fix- 

ing may not always be possible. Clearly, dead reckoning and reference navigation are 

complementary and combinations of the two approaches can provide very accurate 

positioning systems. 

Starting from the premise that coping with uncertainty is the most crucial 

problem a mobile robot must face, we can conclude that the robot must have the 

following basic capabilities: 

• Sensory interpretation: The robot must be able to determine its relation- 
ship to the environment by sensing. A wide variety of sensing technologies are 
available: odometry; ultrasonic; infrared and laser range sensing; and monoc- 
ular, binocular, and trinocular vision have all been explored. The difficulty is 
in interpreting these data, that is, in deciding what the sensor signals tell us 
about the external world. 

• Reasoning: The robot must be able to decide what actions are required to 
achieve its goal(s) in a given environment. This may involve decisions ranging 
from what paths to take to what sensors to use. 

B.     PROBLEM STATEMENT 

1.      Definitions 

This subsection defines a list of terms and concepts used throughout this dis- 

sertation. 



Ill 

Bl 

Obstacles    \ 

Free Space 

/       Z 

Figure 1. Robot's world space 

Let H denote the set of real numbers. The environment for the motion plan- 

ning task of this dissertation is a two-dimensional plane H2 on which a global Carte- 

sian coordinate system is defined. 

Let B\, ■ ■ ■, Bn be fixed objects (simple polygons) distributed in 1Z2. These 

Bi's are called obstacles. 

A world W is a set of n simple polygonal obstacles, 

W =  {Bo, £1, ••-,£«},    n>0 

where BQ is the outermost polygonal boundary, B\, • • • Bn are polygonal obstacles 

inside the boundary, and no pair of polygons intersects or touches. 

The free space free(W) is the inside of B0 minus the union of the n polygons 

contained in Bo. In other words, the free space is the complement of the union of all 

polygons in W. We call the free space, together with the set of polygons, the robot's 

world (Figure 1). 

We consider path / to be directed curve with natural direction from /(0) to 

/(l). A path f in W is a continous function 

/:[0,l]->/ree(W) 



with /(O) =fc /(l)- The two points /(0) and f(l) are called its endpoints, and the 

path joins them. If they are distinct, we usually denote /(0) as a start S and /(l) as 

a goal G (Figure 2). 

Figure 2. A world and paths 

Let q denote the robot's configuration. The robot's configuration q is defined 

by 

q = (p, 6, K) 

where p, 6 and K are its position, orientation, and curvature respectively. The con- 

figuration defined in this dissertation is normally used to describe the robot's instan- 

taneous status, either stationary or moving. This configuration is especially useful 

for specifying a path. For instance, if we use q = (p, 0, K) to specify a line, this line 

passes through the point at position p and with orientation 0. When the curvature 

element is K = 0, it is specifying a straight line, otherwise it is a curve. 

The motion of the robot is subject to nonholonomic kinematic constraints, 

That is, the robot is able to perform both forward and reverse motion but not sideways 

motion: 

• A finite curvature limitation of motion represented by the maximum curvature 
(iimax) that the vehicle can take. 

6 



• A finite rate of change of curvature limitation of smooth motion represented 
by the maximum rate of change of curvature ((^)max)-1 

2.      Problem Description 

The purpose of this research is to investigate fundamental theories for navi- 

gation to construct an autonomous mobile robots for military and industrial appli- 

cations. This dissertation is an investigation of one aspect of this goal: the problem 

of motion planning which allows an autonomous robot to plan its own motion in a 

known and static two-dimensional environment. Here it is desired to safely navigate 

an autonomous vehicle through free space using smooth motions. 

We consider that the motion planning problem for a rigid body robot must 

be divided into at least two subproblems: a global path planning problem and a local 

motion planning problem. The first is the problem of finding the best path class in 

terms of homotopy [26]. In that sense, this level is an abstract portion of the whole 

problem. The second is the problem of finding the best motion when a path class is 

defined by the first subproblem. We call this method layered motion planning. 

The problem statements specifically addressed herein are the following: 

1. How do we best represent the path class to make local motion planning easier? 

2. How do we find a safe local motion planning algorithm? 

3. How do we find a robust real-time positional-uncertainty elimination (self- 
localization) algorithm? 

Following theoretical analysis, algorithm design, and simulation, we will im- 

plement the resulting algorithms on the autonomous self-contained mobile vehicle 

Yamabico-11 for testing and evaluation. 

1This limitation is applicable only when we are interested in smooth motion in which the robot is 
not supposed to stop when moving along a path. If the robot is allowed to stop before maneuvering, 
then this limitation does not exist and the robot is able to follow any /cmax-constrained path so long 
as there is tangential continuity anywhere on the path. 



3.      Assumptions 

The following assumptions are used throughout this dissertation: 

• The world W is polygonal. 

• Although the robot will be operating in a three-dimensional environment, it is 
assumed that the model reflects the projection of the obstacles onto the plane 
of the floor on which the robot moves. 

• The vehicle and all objects in the robot's world are rigid bodies. 

• The obstacles do not intersect or touch each other. 

• The robot has complete knowledge of the environment in which it is operating. 
However, the use of external references to guide its motion other than the 
physical characteristics of the walls will not be used. 

• All obstacles in the environment are stationary. 

• All obstacles faces are perpendicular to the plane in which the robot moves. 
This assumption is required to assure a good sensor return from all objects. 

C.     PREVIOUS WORK 

1.      Motion Planning 

Several concepts and theories have been developed which may lead to solving 

the motion planning problem. The "classical" approaches to motion planning can be 

divided in the following three classes: roadmap methods, cell decomposition methods, 

and potential field methods. We will briefly introduce these approaches and summarize 

them below. For a thorough discussion of these approaches see [49, 32]. 

a. Roadmap and Cell Decomposition Methods 

Let W denote the space of all configurations for the robot, and let 

free(W) be the robot's free configuration space, i.e., the subset of W in which the 

robot does not intersect any obstacles. The roadmap approach (or skeleton approach) 

consists of capturing the connectivity of free(W) in the form of a network of one- 

dimensional curves, the roadmap, lying in free(W;).   After a roadmap p has been 



constructed, the path planning is reduced to connecting the start and goal configu- 

rations to p, and searching p for a path. 

The principle of the cell decomposition approach is to decompose the 

robots free configuration space free(W) into a collection of non-overlapping regions 

(cells), whose union is (exactly or approximately) free(W). This cell decomposition is 

then used for constructing the connectivity graph G which represents the adjacency 

relation among the constructed cells. Every node in G corresponds to a cell, and two 

nodes are connected by an edge if and only if their corresponding cells are adjacent. 

The path planning is then performed by finding a path in G from the node corre- 

sponding to the start cell (the cell containing the start configuration) to the node 

corresponding to the goal cell (the cell containing the goal configuration). 

We see that both the roadmap approach as well as the cell decom- 

position approach consists of constructing a global data structure that can later be 

used for solving one or more motion planning problems. A strong point of both ap- 

proaches is that cell-decomposition and roadmap algorithms are typically complete, 

i.e., whenever a path exists a path will be found. There are two serious drawbacks: 

1. The computations of the data structures tend to be very expensive in both 
time and memory, and 

2. They do not seem to be suitable for robots with non-holonomic constraints 
such as car-like robots or multi-body mobile robots. 

b.        Potential Field Methods 

In the potential field approach, no data structure is built. Globally 

the idea is that the robot (represented by a configuration in configuration space) is 

treated as a particle under the influence of an artificial potential field whose variations 

are expected to reflect the "structure" of the free configuration space free(W). The 

potential field is typically defined by a function / : W —> 1Z that is a weighed sum 

of an attractive potential, pulling the robot towards the goal configuration, and a 

number of repulsive potentials, pushing the robot away from the obstacles.   The 

9 



motion planning is performed by repeatedly computing the most promising direction 

of motion and moving in this direction by some step size. 

A typical problem with potential field methods is that the robot can 

become stuck in a local minimum of the potential field. That is, the robot reaches a 

configuration q where the (weighted) sum over all the potentials is equal to the null- 

vector. Recently, much progress has been made in defining good potential functions 

with few local minima, and efficient techniques have been developed for escaping 

from local minima. Currently there exist practical potential-field planners for robots 

with many degrees of freedom, as well as for some types of non-holonomic robots 

(see for example [3]). So it seems that the potential-field approach does not have 

the disadvantages of the former approaches. A major drawback of the potential-field 

approach, though, is that the concept is unsuitable for learning problems (no start and 

goal configurations are specified, and the objective is to compute a data-structure, 

which can later used for queries with arbitrary start and goal configurations), due to 

the fact that every goal configuration defines a distinct potential field. 

c. Other Methods 

Several other methods were developed by Lozano-Perez to handle rigid 

body robots as point robots. The configuration space approach is considered as one 

of global motion planning using the concept of the vehicle configuration (x,y,0) [53]. 

The idea is to transform the problem of planning the motion of a dimensioned object 

into the problem of planning the path of a point robot by mapping the obstacles from 

the physical work space into the configuration space. However, it is known that the 

computation time for the configuration space approach is larger and also it is difficult 

to incorporate nonholonomic constraints into the searching algorithm. 

Barraquand and Latombe present a method in which the entire con- 

figuration space is discrete. A dynamic search in the discrete configuration space 

uses the number of maneuvers as a cost function is considered. Methods of this type 

possess conflicts between accuracy and computational costs [2]. 

10 



Laumond extended the basic motion planning problem denned by La- 

tombe [49] to the case of a point robot with kinematic constraints. He developed a 

method to break down the planning problem into two phases. In the first phase, the 

problem is solved by finding a collision-free path while ignoring the orientations of 

robot's start and goal configurations. Then, in second phase, the path is transformed 

into a topologically equivalent collision-free path using arcs and tangent line segments. 

The number of reversals in the path is not limited and the path involving reversals is 

not smooth [50]. 

A closely related research direction is to develop algorithms for motion 

planning using the border concept [47, 9]. Drawbacks of the border approach are 

several: 

• This concept is unsuitable if the shape of the regions is not always simple (as 
in non convex region). 

• The decomposition is not unique. 

• The optimum number of borders is still a question. 

• This task becomes unduely complex for dynamic environments. 

The other global motion planning and local motion planning ideas can 

be found in other research reports. Some of these focus on motion planning for 

manipulators [33, 42] and others provide general ideas [23, 32, 65]. 

2.      Self-Localization 

Several approaches have been developed relating to robust and precise naviga- 

tion for an autonomous mobile vehicle using model-sonar based navigation. We will 

briefly introduce these approaches and summarize them below. 

In [14], a method for reducing uncertainty using sonar data interpretation and 

Kaiman filtering is proposed. Line fitting with the sonar data is used. 

A technique to estimate the positional and orientational errors and a method 

to reset them is described in [66]. 

11 



The problem of landmark tracking over sequences of stereo image pairs is 

studied in [56, 48]. Both approaches develop multivariate Gaussian error models for 

the triangulation errors occurring when depth is inferred from stereo images. Kaiman 

filters are used to reduce the uncertainty in the vehicle position as well as in the 

position of the observed objects. 

Use of an Approximate Transformation (AT) framework for robot localization 

with sonar data is described in [18]. Fifteen ultrasonic range finding transducers 

arranged in a circular array are used to build dense two-dimensional maps based 

upon empty and occupied volumes in a cone in front of the sensor. 

Rule-based matching of line segments which are extracted from sonar data 

with precompiled line models of indoor environments is suggested in [16]. 

In [12], a fast, robust matching algorithm which determines the congruence be- 

tween range data points (derived from an infrared range-finder) and a two-dimensional 

map of its environment is investigated. 

The localization system of a free-navigating mobile robot is described in [30]. 

The absolute position and orientation of the vehicle by matching verticle plannar 

surfaces extracted from a 3D-laser-range-image with corresponding surfaces predicted 

from a 3D-environmental model are determined. Continuous localization is achieved 

by fusing single-image localization and dead-reckoning data by means of a statistical 

uncertainty evolution technique. 

The robot "RAMUS" uses an a priori map of the environment for mobile 

robot localization [29]. This environment is cluttered with unknown obstacles and 

an environmental model is built from ultrasonic readings using clustering to discard 

false echos. 

In [10], a robot automatically maps an office building environment and then 

smoothly navigates through this environment at a speed of 78 cm per second. 

12 



D.     ORGANIZATION OF DISSERTATION 

The dissertation is organized as follows. 

Chapter II discusses the approach used in this dissertation and contrasts it 

with previous work in the field of autonomous mobile robot motion planning. 

Chapter III presents definitions and concepts of polygons and subpolygons. 

Also, it describes the algorithm of determing image type of any point in a free space 

on a convex polygon. 

Chapter IV describes the theory of a free-space decomposition using Voronoi 

diagrams. It presents a method to symbolically represent the path classes using a 

polygonal world. 

Chapter V describes how to track any polygon. It describes the algorithm for 

polygon tracking. It reports the results as implemented on the simulator. 

Chapter VI discusses local motion planning in detail. It presents the analysis of 

the local motion planning tools to be used in this dissertation. It gives a description of 

the algorithm for planning the robot's motion. It reports the results as implemented 

on the simulator. 

Chapter VII presents the theory of self-localization. It introduces an algorithm 

for robot odometry correction. 

Chapter VIII reports the results of local motion planning algorithm as im- 

plemented on an autonomous mobile robot system Yamabico-11 and discusses the 

implications and consequences of the results. Also, it gives a detailed explanation 

of an experimental results of applying positional uncertainty elimination in real time 

using Yamabico-11. 

Chapter IX introduces the hardware of the Naval Postgraduate School au- 

tonomous mobile robot Yamabico-11. It describes the design of a robotic software 

system - Model-Based Mobile robot Language (MML). 

Chapter X describes recommendations for future research. 

Chapter XI summarizes the major contributions of this dissertation. 

13 



Appendix A provides a normalization definition. 

Appendix B introduces a least square linear fitting method. 

14 



II.        LAYERED MOTION PLANNING 

A.     INTRODUCTION 

Motion planning is one of the most important areas of robotics research. The 

complexity of the motion-planning problem has hindered the development of practical 

algorithms. Not all robotic systems plan the robot's motion in a deliberate fashion. 

In fact, there exists a wide variety of motion planners including: no plan/no model, a 

flexible plan, and a rigid, unalterable plan. Many different methods have been devel- 

oped for motion planning. These methods are variations of a few general approaches: 

road map, cell decomposition, potential field and mathematical programming [49, 32]. 

Some of them is widely applicable, whereas others solve only a narrow range of motion 

planning problems. Unfortunately, none of them is complete in the sense of practi- 

cal applicability for solving the motion planning problem defined in this dissertation. 

For example, the robot's motion in the area of the start or goal configuration is more 

restricted and requires more deliberative planning. Not all robotics systems proposed 

for motion planning are developed to address this consideration. Also, nonholonomic 

constraints and kinematic constraints have not taken into consideration in many ap- 

proaches. Furthermore, most research in motion planning, although theoretically 

valuable, is not practically useful. For these reasons, we propose a new approach 

where the motion planning problem for a rigid body robot is attacked through a 

method called layered motion planning. The layered motion planning problem uses 

global path planning and local motion planning to solve the original motion planning 

problem. As the layered motion planning is divided into two parts, the first one (path 

class determination) is solved by the global path planner, while the second part (path 

class navigation) is handled by the local motion planning. The global path planner 

finds the optimal path class in terms of homotopy [26]. In that sense, this level is 

an abstract portion of the whole problem. The second is the problem of finding the 

optimal motion when a global path plan is defined by the first planner.   Figure 3 

15 



shows the layered motion planning structure. 

Layered Motion Planning 

Global Path Planner Local Motion Planner 

Path Class Determination Path Class Navigation 

Figure 3. Layered motion planning structure 

B.     MOTION PLANNER STRUCTURE 

The motion-planner structure of the system provides the framework in which 

each of the above parts interact. Figure 4 provides a depiction of the structure of the 

motion planner used in Yamabico-11. The motion planner has a layered structure. 

It consists of a mission planner, a global path planner, a local motion planner and a 

self-localization module. 

1. Mission Planner 

The highest level in the framework is mission planner. The mission plan- 

ner uses knowledge-based inference engines to convert abstract goals into geometric 

goals and mobility constraints. In this level, high levels of abstraction and long-term 

memory are used. This level is not a focus of this dissertation. 

2. World Model 

The world model contains information used by the global path planner and 

local motion planner. This information is used by the global path planner in con- 

structing a global path plan.  Also, lower levels (local motion planner) use that in- 

16 



Global Path Planner 

1 

QPa th Class Description 
> 

2D World Model 

l ^- 

Local Motion Planner ~7   Self     > 

Vehicle 
Configuration 

I Localization 

/                                            \ 

Motion 
System 

Sonar 
System 

Figure 4. Motion planner/execution architecture 

formation to carry out the global path plan. This information serves as a basis for 

real-time decision process of the local motion planner. 

3.      Global Path Planner 
The global path planner is related to the most abstract aspect of the motion 

planning problem in robotics, i.e., the connectivity of geometrical objects. It uses the 

idea of the Voronoi diagram to represent the path class. It starts with decomposition 

of the free space of the given polygonal world. Then a connectivity graph is built 

and searched to determine the required path class. This path class represented by 

a sequence of left and right polygons called a directed v-edges sequence, H, which 

specifies the direction of a possible path for the robot. This path class plays an 

important role in local motion planning. The details of global path planning will be 

discussed in Chapter IV. 

17 



4. Local Motion Planner 

The local motion planner is responsible for following the global path as closely 

as possible without violating any kinematic, dynamic, or holonomic constraints. So, 

the task of the local motion planner is to produce a smooth collision-free motion 

for the robot. The local motion planner is responsible for the following: selecting 

and initiating a steering function control rule, executing the resultant motion, and 

monitoring to ensure that the plan is proceeding. The steering function and the 

principle of the left and right images of the given path class are powerful notions used 

to find solutions in this layer. This method was implemented first on a simulator, 

then on the autonomous mobile robot Yamabico-11. This problem is very important 

in this dissertation because self-localization is executed while robot moving. The local 

motion planning will be discussed more deeply in Chapters V, VI. 

5. Self-Localization Module 

A mobile robot can be assisted in its navigation tasks by providing it with a 

priori knowledge about the environment in which it will navigate, usually called a 

world model or a map. One of the issues to be addressed in using a stored model as 

an aid in mobile robot navigation is that of estimating the position and orientation of 

the robot with respect to the model. Once the robot accurately estimates its location 

within the model, other navigation tasks can be performed. Most mobile robots are 

equipped with A key capability of an autonomous mobile robot operating in an indoor 

environment is localization, i.e. determination of its current position and orientation. 

The usual method for position estimation of a wheeled autonomous mobile robot is 

odometry or dead reckoning. However, it has a problem of gradual error accumulation 

when the robot moves long distances. Unlike the errors in robot manipulators, this 

problem is crucial in navigation because vehicles' localization errors determined by 

odometry may be increased indefinitely until the vehicle is not able to move safety. 

We assume that the vehicle 

1. has a geometric model of the static portions of an indoor world, 

18 



2. possesses a dead-reckoning capability, 

3. executes model-based navigation through these two capabilities, and 

4. has sonic sensors. 

So, the purpose of the self-localization is to find a robust algorithm so that the vehicle 

can continually eliminate its positional uncertainty while execting missions. Through 

this method, the robot can minimize its positional uncertainty, can make safe and 

reliable motions, and can perform useful tasks in a partially-known world. Thus, 

self-localization is an essential component of model-based navigation for indoor ap- 

plications. Self-localization will be discussed in detail in Chapter VII. 

C.     METHODOLOGY 

Summarizing, the approach taken in this dissertation will provide a unified 

approach to the motion planning problem for autonomous vehicles using proximity. 

It includes descriptions of the following: 

1. An image type of a point in free space on a convex polygon algorithm (Chap- 
ter III). 

2. A path class representation using polygonal world and Voronoi diagram (Chap- 
ter IV). 

3. A safe local motion planning algorithm (Chapter V, VI). 

4. A robust real-time positional-uncertainty elimination (self-localization) algo- 
rithm (Chapter  VII). 

After theoretical analysis, algorithm design, and simulation, we implement the re- 

sulting algorithms on the autonomous mobile vehicle Yamabico-11 for testing and 

evaluation. 

19 



20 



III.        POLYGONS, SUBPOLYGONS AND 
IMAGES 

Before discussing motion planning, we need to give precise meaning to the 

concepts that provide the basis for this dissertation. This chapter presents definitions 

and concepts associated with polygons and subpolygons. Afterwards, a discussion of 

an algorithm which finds an image of a point in free space on polygon is presented. 

We will restrict the discussion in this chapter to the Euclidean Plane E2. 

A.     GENERAL DEFINITIONS 

A point p is represented as a pair of coordinates (x,y) in E2. Given two 

distinct points px and p2 in E2, the linear combination 

ap1 + (1 - a)p2     a eft 

is a line in E2 where ft is the set of real numbers. If, in the expression api + (1 — a)p2, 

we add the condition 0 < a < 1, we obtain the convex combination of p\ and p2, i.e., 

apx + (1 - a)p2     (a ell,    0 < a < 1). 

This convex combination describes a line segment joining the two points pi and p2 

[59]. Normally this segment is denoted as pip2- 

A topology [67] on a set 5 is a collection T of subsets of S (called open sets) 

having the following properties: 

1. The empty set and set S are in T. 

2. The union of elements in an arbitrary subcollection of T is in T. 

3. The intersection of elements in a finite subcollection of T is in T. 

Definition: A metric (or distance function) [67] on a set S is a function d: S x S —► 1Z 

that satisfies the following conditions: 

21 



1. Positive definiteness: d(x,y) > 0 for all x,y £ S, and d(x,y) = 0 if and only 
if x = y. 

2. Symmetry. d(x, y) = J(y, x) for all x,y £ S. 

3. Triangle inequality: d(x, z) < d(x, y) + d(y, z) for all x,y,z £ 5. 

A metric space (S, d) is a set 5 together with a metric on it. If there is no 

ambiguity, the metric space can be referred to simply as S. A space S is connected if 

it is not the union of two disjoint, nonempty open sets. Intuitively, this means that 

S can best be viewed as "one piece", and is in some sense indecomposible. A related 

idea, and one which is more suitable to our purpose is that of path connectedness 

[25, 60]. 

Let XQ and x\ £ S. A path fin S from XQ to x\ is a continuous function 

/:  [0,1]  -* S 

such that /(0) = XQ and /(l) = x\. We say that S is path connected if for every pair 

of points XQ and x\ in S, there exists a path between them. Additionally, if a space 

is path connected, then it is also connected [25, 60]. 

Two characterizations of sets which are needed for later definitions are whether 

a set is open or closed, and whether a set is bounded or unbounded. A set is closed 

if and only if it contains its boundary (in other words, if and only if it contains all 

its limit points). Additionally, the complement of a closed set is open, which implies 

that a set is open if and only if it contains none of its boundary points. Since, a set 

may contain only a portion of its boundary, it may be neither open nor closed. We 

give the definition of a bounded set by using the intuitive notion of distance. A set 

is bounded if the distance between any two of its members is finite. A set that is not 

bounded is said to be unbounded [43, 60]. 

Finally, we introduce the concept of a hole. The Jordan Curve Theorem states 

that a simple closed curve J in the Euclidean plane separates the plane into two 

open connected sets with J as their common boundary.  Exactly one of these open 

22 



connected sets (the "inner region") is bounded [13]. We define a hole to be one of 

the open connected sets. We say that the hole is ccw if it is bounded, and cw if it is 

unbounded. Sometimes it may be useful to consider the hole along with its boundary, 

but generally we refer to them separately. 

B.     POLYGON 
Given n > 3 points i>i,• • • ,un in the plane, in a certain order, we obtain a 

n-sided polygon or n-gon by connecting each point to the next, and the last to the 

first, with a line segment. The points u,- are the vertices and the segments üiüi+I are 

the sides or edges of the polygon. Therefore, polygon, B, is denned as: 

B =  {ui,u2,---,un},    n > 3 

When n = 3 we have a triangle, when n = 4 we have a quadrangle or quadrilateral, and 

so on [67]. A polygon is represented as a sequence rather than a set of points because 

the order in which the points are given is very important. Changing the order, even 

without changing the points themselves, may result in a different polygon. In this 

dissertation, we will follow a convention that a vertex with the minimum x-coordinate 

among all the vertices is taken as the first vertex in B. If there is more than one vertex 

which has the same x-coordinate, we take the one with the least ^-coordinate as the 

first one among them. 

Now, how we define how to determine the next or previous vertex from the 

current one. 

Definition: A simple polygon [67] is one whose corresponding path does not intersect 

itself; this means that 

1. no consecutive edges are on the same line, in other words, any three consecutive 
points in the sequence are not colinear and 

2. no two edges intersect (except that consecutive edges intersect at the common 
vertex). 

23 



For example, Figure 5a and 5b show two simple quadrilaterals while 5c is not simple. 

Another example is shown in Figure 6. We will treat only simple polygons. 

(a) (b) (c) 

Figure 5. Simple and non-simple polygon (I) 

(a) Simple (b) Non-simple 

Figure 6. Simple and non-simple polygon (II) 

Definition: The next function ip : B —» B is defined as: 

V{+1   if   1 < i < n - 1 

V\       if   i = n 
(III.1) 

The meaning of cp(v) is the "next vertex" of v in B. For example, in Figure 5a, the 

next of vi is u2 and the next of v4 is v\. 

Proposition III.l The function <p : B —> B is a one-to-one corresponding or a 
bijection. 

24 



Proof. The function cp is one-to-one and onto. It is one-to-one since the function 

takes on distinct values. It is onto since all elements of the codomain are images of 

elements in the domain. Hence, ip is a bijection. D 

Proposition III.2 : Let the function ip be a one-to-one corresponding from the set 
B to the set B. The inverse function (p-1 : B —>• B exists and is a one-to-one 
corresponding also. 

Proof. If a function <p is not a one-to-one corresponding, we cannot define an inverse 

function of (p. When <p is not a one-to-one corresponding, either it is not one-to-one 

or it is not onto. If <p is not one-to-one, some element Vj in the codomain is the image 

of more than one element in the domain. If ip is not onto, for some element Vj in the 

codomain, no element Vi in the domain exists for which tp(vi) = Vj. Consequently, 

if <p is not a one-to-one corresponding, we cannot assign to each element Vj in the 

codomain a unique element u; in the domain such that <p(v{) = Vj (because for some 

Vj there is either more than one such u,- or no such vi). D 

The meaning of <p~l is the "previous vertex" of v. For example, in Figure 5 - part 

(a), the previous vertex of V\ is v4. 

When we refer to the angle at a vertex u, we have in mind the interior angle. 

We denote this angle by /%. In any n-gon, the sum of the interior angles equals 

2(n—2) x 90°; for example, the sum of the angles of a triangle is 180°. The complement 

of Vi is the exterior angle at that vertex. We denote this angle by Si (see Figure 8). 

Let ty(vi,(p(vi)) represent the direction from u,- to <p(vi). 

Definition: Given two distinct points, pi = (xi,r/i) and p2 = (#2,3/2) (Figure 7). we 

define a direction function ty(pi,p2) as 

^(p!,p2) = atan2(y2 - yx, x2- xi) 

25 



y 

*(Pl,P2) 

X 

Figure 7. Direction between Two Points 

The exterior angle, S{, at u; is the angle between one side and the extension of the 

adjacent side related to V{ [67] (see Figure 8). 

Si = $ (*(«»,¥>(«,-)) - ^((p-^Vilvi)) 

Vte, v3) » 

Figure 8. Interior and exterior angle of a simple polygon 

26 



Note that the difference between the directions is normalized to fall within [—7r,7r]. 

(the function $ is defined in "APPENDIX. NORMALIZING ANGLES"). 

Definition: A vertex u,- on a simple polygon is said to be a convex vertex if Si > 0. If 

Si < 0, A vertex V{ is said to be concave vertex. 

(a) Convex Simple Polygon (b) Concave Simple Polygon 

Figure 9. Convex and concave simple polygons 

For example, in Figure 9, in part (a), the vertex v2 is convex because S2 > 0. In part 

(b), the vertex u3 is concave because S2 < 0. 

Definition: A domain D in E2 is convex if , for any two points p\ and p2 in D, the 

segment pfpi is entirely contained in D (Figure 10(a)). It can be shown that the 

intersection of convex domains is a convex domain. 

Definition: A simple polygon is a convex polygon if all of its vertices are convex 

(Figures 9(a), 10(a)), otherwise it is nonconvex polygon (Figures 9(b), 10(b)). 

Now, how we can represent any convex or nonconvex polygon.  Before doing 

this, we will define three important predicates, ccw (counterclockwise), cw (clockwise) 

27 



(a) Convex (b) Not convex 

Figure 10. Convex set 

and col (colinear). Consider vectors ü = (xi,?/i)T and v = (x2,y2)T, shown in 

Figure 11(a). The cross product uxv can be interpreted as the signed area of the 

parallelogram formed by the points (0,0), u,v, and u + v = (xi + x2,yi + y-i). An 

equivalent, but more useful, definition gives the cross product as the determinant of 

a matrix.1 

u + v 

(0,0) 

1 

||||l|||i|||| mmmsMm 

(0.0) /":r 
cw 

(a) (b) 

Figure 11. Cross product of vectors 

uxv   = 
X\     X2 

2/i    2/2 

=   £i2/2 - x2yi 

=    —V X Ü (III.2) 

1Actually, the cross product is a three-dimensional concept. It is a vector that is perpendicular 
to both u and v according to the "right-hand rule" and whose magnitude is \x1y2 — X22/i|- Here, 
however, it will prove convenient to treat the cross product simply as the value x\y2 — X2j/i- 

28 



If ü x v is positive, then ü is clockwise from v with respect to the origin (0, 0); if this 

cross product is negative, then u is counterclockwise from v. Figure 11(b) shows the 

clockwise and counterclockwise regions relative to a vector u. A boundary condition 

arises if the cross product is zero; in this case, the vectors are collinear, pointing in 

either the same or opposite directions [11]. 

counterclockwise clockwise 

(a) (b) 

Figure 12. Using the cross product to determine how consecutive line segments v0vi 
and V1V2 turn at a point v\ 

To determine whether a directed segment TJ0Ü2 is clockwise or counterclockwise 

from a directed segment VQHX with respect to their common endpoint v0, we simply 

translate to use vo as the origin (see Figure 12). That is, we let vi — vo denote the 

vector u' = (x'-^y^), where x\ = X\ — x0 and y[ = yi — y0, and we define V2 — Vo 

similarly. We then compute the cross product 

(v2 - v0) x (vi - v0) = (x2 - X0X2/1 - yd) ~ (*i - x0)(y2 - yo) 

If the sign of this cross product is negative, then vtfü^ is counterclockwise from üpT; 

if positive, it is clockwise. The above discussion is very useful for all results related 

to the area of the polygon. 

The area of a polygon whose vertices Vi have coordinates (z,-, j/t), for 1 < i < n, 

is the "signed" value of 

111 
area(B)   =   -(x1y2 - x2yi) + h ^{xn-iyn - xByn_i) + -(in»/i - siy«), 

1   n 

= öS(x^+i-a;''+iyi)? 

29 



where in the summation we take x,+i = x\ and j/,-+1 = y\. In particular, for a triangle 

B = {vuv2,vz} = {(xuy1),(x2,y2),(x3,y3)}, let vectors ü = (x1,y1)
T, v = (x2,y2)

T 

and w = (xz, yz)T ■ the "signed" area is defined as 

A   =   ^ 

Xi 2/1 1 

X2 2/2 1 

Xz 2/3 1 

(III.3) 

=    2 (Xl^2 ~ ^J/i + «2«/3 - xzy2 + x3j/i - afjy3) 

=   -(u X V +V X w + w x u) 

=   2^2 - *i)(ste - yx) - (x3 - xx)(y2 - yt)] 

Proposition III.3 For any triangle B, 
(I) If A > 0, B is ccw and area of B is equal to A. 
(II) If A < 0, B is cw and area of B is equal to |A|. 
(III) IfA = 0,Bis col and area ofB = 0. 

Proof. By using Eq. III.2, 

A   =   -(u x v +v x w + w x u) 
ZJ 

if X\    x2 

+ 
X2     Xz 

+ 
Xz     X\ 

2/i    2/2 2/2     2/3 2/3   2/1 

The sign of A gives us the result. D 

Definition: A convex polygon is a polygon whose ordered list of vertices produces a 

counterclockwise (ccw) boundary loop. An nonconvex polygon is a polygon whose 

ordered list of vertices produces a clockwise (cw) directed boundary loop (see Fig- 

ure 13). 

A simple polygon partitions the plane into two disjoint regions, the interior 

(bounded) and the exterior (unbounded) that are separated by the polygon (Jordan 

curve theorem) [13]. 

30 



Exterior 

free(B) 

interior 

ÄÜ1I 

Jntenor 

Int(B) 

Exterior 

free(B) 

(a) ccw Polygon (b) cw Polygon 

Figure 13. Interior and exterior of a simple polygon 

Definition: The set of points in the plane enclosed by a simple polygon forms the 

interior of the polygon, denoted 'mt(B), the set of points on the polygon itself forms 

its boundary , denoted B, and the set of points surrounding the polygon forms its 

exterior, denoted free(J3) (see Figure 13). 

Therefore, int(i?) is defined as the set of points to the left of the boundary and free(5) 

is defined as the set of points to the right of the boundary. We classify each simple 

polygon into one of two kinds, ccw or cw, depending on how its free side defined: 

1. for a ccw polygon, free(Z?) is defined as its exterior, and 

2. for a cw polygon, free(2?) is defined as its interior. 

Definition: The convex hull of a set of points S in E2 is the boundary of the smallest 

convex domain in E2 containing S [59]. 

C.     SUBPOLYGONS 

Let B = {vi, v2, • ■ •, vn}, n > 3 be a polygon. It is desired to decompose J5into 

smaller pieces, called subpolygons. If the polygon is convex, i.e., if all the vertices are 

convex (see Figure 9(a)), we stipulate that the polygon B itself is a unique subpolygon 

in B. If B is nonconvex (see Figure 14), i.e., if there is at least one concave vertex 

in B, the polygon can be broken up into one or more subpolygons.   In that case, 

31 



Figure 14. Concave polygon 

the first vertex in the subsequence of vertices defining a subpolygon is a concave 

vertex. The subsequence continues until it encounters another concave vertex, which 

become the last vertex in the subpolygon's defining subsequence. For example, in 

Figure 14, i>3 is the first concave vertex (63 < 0) and v4 is the last concave vertex in 

the this subsequence. Figure 15 shows the decomposition of the conacave polygon B 

in Figure 14. Note that B (Figure 14), which is a nonconvex polygon, consists of four 

subpolygons Ti,T2,T3 and T4. 

Definition: A subsequence 

T =  {vj,Vj+1,-~,vk-i,Vk},    j<k 

of 

B  =  {vl,v2,---,vn},    n >3 

is said to be a subpolygon of B, if T satsifies the following conditions: 

1. Vj and Ufc are concave, and 

2. all the verices i>j+i, • • •, Vk-i are convex. 

32 



'6 V, 

(3) 

(2) (4) 

Figure 15. Subpolygons decomposition of concave polygon 

where Vj and Vk are said to be the end-vertices of the subpolygon T. 

(i) 

(a) 

"6 jj!x-:.:-x::v "5 

(2) (3) 

(b) 

(4) 

Figure 16. Concave polygon and its subpolygons (I) 

Figure 16 is another example of decomposition of a polygon into subpolygons. The 

end-vertices of T are disconnected except in the case where the subpolygon consists 

of only two vertices (see Figure 15). There is a special case where there is only one 

33 



concave vertex u, in B. In this case, 

T = {vi,vi+1,---,Vi} 

is the unique subpolygon. In other word, the nonconvex polygon B consists of only 

one subpolygon T. For example, in Figure 17, vertex v3 is the only concave vertex in 

B where the polygon B consists of only one subpolygon T (B = T). 

Figure 17. Concave polygon and its subpolygons (II) 

The following lemma is the result of the previous discussion of subpolygons. 

Lemma III.l Any nonconvex polygon B is uniquely divided into a finite number of 
subpolygons (Ti,T2, • • • ,Tn) in keeping with the order of occurrences of vertices in 
B. Each convex vertex in B belongs to one and only one subpolygon. 

D.     THE ROBOT'S SPACE 

We use polygonal models to represent the vehicle's 2D world W. Polygons 

are considered to be holes or obstacles for robots in this world. We assume that a 

world W is encircled by an outermost polygonal boundary (cw polygon) and has n 

polygonal obstacles inside the boundary (ccw polygons). 

Definition: A world W is a finite set 

W = {£0,£i, •••,#>},    n>0 

34 



of polygons which satisfies the following conditions: 

1. Bo is (cw polygon), 

2. JBI, • • • Bn are ccw polygons, and 

3. for any i,j with 0 < i < j < n, 

where Sc denotes the complement of a set S. 

A robot can work only in the free space free(W) of this world. The free space 

of W is the inside of Bo minus the union of the other n polygons' inside. In other 

words, the free space is the complement of the union of all the polygons. We call the 

free space, together with the set of polygons, the robot's world (Figure 18). 

^  cw Polygon 

M::   :':M:ii"■.'&.'€.:.   : :.Ä:!:SS::.>*...S:£Bw;iS..:,:2' %l£.-.■:■..is:£S:S:   : "s£ WM 

^;-^:;-l; :..1:v--7' 

ccw Polygons         \ 

Free Space Av^^^^ 
^p£ 

Figure 18. Robot's world space 

Definition: In a given world W, the free space and interior of W are defined as follow: 

/ree(W)   =    f] free(Bi) 
i=0 

=   K2-W 

int(W)   =   [jint(Bi) 
i=0 

35 



Furthermore, we consider the boundary of a polygon to be directed curve 

which when traversed, puts the polygon to the left. This directed boundary naturally 

defines the neighbors of a vertex to be the next vertex, and the previous vertex. 

E.     IMAGES 

We assume a global two-dimensional Cartesion coordinate system in a plane 

E2. Given two distinct points pi — (xi,yi) and p2 = (x2,y2) in E2, The Euclidean 

distance d(pi,p2) between them is defined as: 

d(puP2) = J(x1-x2¥ + (y1-y2y (III.4) 

Assume that there is an object o in a plane. An object might be a point, a 

line, an open line segment, a polygon, or other set of points. The shortest distance 

d(p, o) between a point p and an object o is defined as follows: 

Eq. III.5 generalizes the function d defined by Eq. III.4. 

(III.5) 

m\ 

*v w 
/ im(p,o) 

Figure 19. Image on object 

Definition: A point p\ in o which satisfies d(p,pi) = d(p,o) is said to be an image of 

p on o and is denoted by im(p, o) (Figure 19). 

36 



If a world W has more than one object, an image im(p, W) is defined as the 

image im(p, o;) such that d(p, Oi) is the minimum over all objects in W (Figure 20). 

o 

/ im(p, o2 ) 

•tfr'       t 

im(p, a.) 

Figure 20. Images on world 

Suppose that a vehicle's position in the free space is known. It has its left 

and right images on the obstacles (polygons). The image may be on an edge or on 

a vertex of a convex polygon. We shall try to solve the following problem: given a 

point p in free space and a convex polygon B, determine whether the image from p 

to B is on an edge or on a vertex of B. In the following subsections, we describe our 

solution to this problem. 

1.      Visibility from Point to Polygon 

Assume that we are given a convex polygon B = (vi, • ■ •, vn) and a point p € 

free(jB). The significant notion for our purpose is the following classification of each 

vertex u,- of B with respect to the segment pvi. Each vertex of B is said to be visible, 

invisible, cw-tangential, or ccw-tangential (we should add with respect to segment pvi, 

but we shall normally imply this qualification) (see Figure 21). 

Definition: Let B be a convex polygon, and let a point p € free(i?). 

37 



ccw-tangential 

',-^V 
^p 

/ cw -tangential 

Figure 21. Visibility from point p to convex polygon B (I) 

• A vertex u,- is tangential from point p if the two vertices adjacent to u,- lie on 
the same side of the line containing pvi. 

• A vertex v, is visible if the segment p57 does not intersect the interior of B and 
the two vertices adjacent to u,- lie on opposite sides of the line containing pvi. 

• A vertex V{ is invisible if the segment pvi intersects the interior of B. 

(a) invisible 

• P 

i 
v, v. 

(c) visible 

-•    P 

• P 

(b)cw and ccw tangential 

Figure 22. Classifications of vertex u; of polygon B with respect to a segment pvi 

38 



Figure 22 shows the classifications of a vertex u,- of polygon B with respect to a 

segment püj. 

Let cw-tangential(p, u;, B) denote that vertex v,- of B is clockwise tangential 

with respect to the segment pvi, ccw-tangential{p, Vi,B) denote that vertex v,- of B is 

counterclockwise tangential with respect to the segment pvi, visibk(p,Vi,B) denote 

that vertex V{ of B is visible with respect to the segment pvi, and invisible(p,Vi,B) 

denote that vertex Vi of B is invisible with respect to the segment pvi. It is now easy 

to establish the following lemma. 

Lemma III.2 Given a convex polygon B and a point p € free(B), the vertex V{ is 
one of the following four types: 

cw-tangential (p, v{, B) = ~ ccw (p, Vi, ip'1 (»,-)) A ~ ccw (p, «,-, y(t>,-))        (III.6) 

ccw-tangential(p, ut-, £) = ~ cw; (p, v,, <p~* (u,-)) A ~ cw (p, Vi, (p(vi))        (HI.7) 

visible(p, vh B)  =  ccw (p, ut-, <^~; («,-)) A cw (p, ©,-, ¥>(«,-)) (III.8) 

invisible(p, vt, B) =  cw (p, vt, <p(vi)) A ccw (p, ©,-, y»-i (t;,-)) (III.9) 

Proof. 

For the first part (Eq. III.6), V{ is cw tangential if the two vertices adjacent 

to Vi, y-1(ui) and <p(vi), lie on the same side of the line containing pvi. we have the 

following three cases. 

• case 1: cw (p, u,-, ¥>_1(u;)) A cw (p, ut-, <p{vi)) 

If pü7 and ut-y>~1(ü,-) make a right turn at Vj, py?~1(u,-) is clockwise from püj, 
and pvi and ut-y(t>,-) make a right turn at ut-, pip(vi) is clockwise from pü-, then 
Vi is cw-tangential. 

• case 2: co/ (p, t/,-, y_1(i;,-)) A cu? (p, u,-, <p(u,-)) 

If ff,u«, and y-1(u4) are collinear and pvi and Vi(p(vi) make a right turn at ut-, 
p(fi(vi) is clockwise from püi, then u,- is cw-tangential. 

39 



• case 3: cw (p, u,-, ip 1(u,)) A col (p, v,, ip(vi)) 

If pvi and Vi(f~x{vi) make a right turn at ut-, p^-1^) is clockwise from pvi, 
and p, Vi, and y(t;,-) are collinear, then u,- is cw-tangential. 

This gives a proof of Eq. III.6. in other words, ut- is cw-tangential from p (see Fig- 

ures 21, 22). 

The second part (Eq. III. 7) is proven similarly. 

For the third part (Eq. III.8), since the two vertices adjacent to u,- lie on the 

opposite side of the line containing pvi and pvi does not intersect the interior of B, 

therefore pvi and Vi<p~x{vi) make a left turn at u,-, pip~x{vi) is counterclockwise from 

pvi, and pvi and vnp(vi) make a right turn at u,-, jxp{vi) is clockwise from pvi. This 

gives a proof of Eq. III.8 (see Figure 21, Figure 22). 

For the last part (Eq. III.9), since pvi intersects the interior of B, therefore pvi 

and Vi<p-X{vi) make a right turn at Vi, p,y-1 (*>,-) is clockwise from pvi, and pvi and 

Vi<p(vi) make a left turn at vt-, p<p(vi) is counterclockwise from pvi. This gives a proof 

of Eq. III.9 (see Figure 21, Figure 22). D 

Figure 23. Visibility from point p to convex polygony B (II) 

40 



For example, in Figure 23, vertex v\ is cw-tangential, vertex v?, is visible, vertex V4 is 

ccw-tangential and vertex V7 is invisible. 

2.      Type of an Image from a Point to a Convex Poly- 
gon 

Let B denote a convex polygon with n vertices. Let a point p £ free(ß). The 

image of p may be on an edge or a vertex of convex polygon. If an image of p is on 

an edge, the image moves when p moves slightly. However, if the image of p is on a 

vertex, it does not move when p moves slightly.  The following theorem determines 

the image occurs either on an edge or on a vertex. 

Theorem ULI Let B = {vx, •■■ ,vn} be a convex polygon, and let p be a point in 
free(B) and define 9,$i, and 62 by 

9   =   V(vi,<p{'>>i)) + ^, 

9X   =   *(p,vO, 

02   =   V(pMvi))- 

Let vertex Vj be cw-tangential from point p.  There exists a vertex u,- (i = j or i ^ j) 
such that the image of p on B is of one of the following two types. 

(I) If 
(0i > 6) A {92 < 9) (III. 10) 

then the image lies on an edge Uj^(v,) of polygon B, 

(II) If 
0i < 9 A (92 < 9) (III.ll) 

then the image of p is on a vertex v of polygon B. 

41 



^•v       cw-tangential 

cw-tangential \ 
v 

Figure 24. Image of point p lies on an edge of convex polygon B 

Proof. 

Consider two straight lines, one joining p with Vi and the other joining p and 

<p(vi). The orientations of these two lines are #i and 62 respectively. Also, denote 

by a the orientation from u; to <p(vi) and by 9 = a + | the perpendicular from p to 

Vi<p(vi). 

For the first part of the proof (Eq. III. 10), let pim be the intersection of two 

lines whose orientations are a and 9 (see Figure 24). Assume that the hypothesis of 

Eq. III. 10 is true. Since 0j > 6, then ppim and pimVi make a left turn at pim. Also, 

92 < 9, then ppim and pimtp(vi) make a right turn at pim. It follows that pim is visible 

from p by lemma III.2.  This means that Vi and <p(vi) are on opposite sides of pim. 

Therefore, p,-TO lies on the boundary of B. In other words, pim lies on an edge Vi<p(vi) 

ofB. 

42 



cw-tangential 

Figure 25. Image of point p lies on vertex V{ of convex polygon B 

For the second part (Eq. III.ll), assume that the hypothesis of Eq. III. 11 is 

true, we have the following three cases (see Figure 25). 

• Case 1: 9X<9 A92<9 

Since 9 > 01? and 9 > 92. Therefore the image of p does not lie on the edge 
vnp{vi). But 91 < #2, since 9?(u,-) is the next vertex to V{. Then u; is a closed 
point from p. Therefore, the image of p is a vertex i>,-. 

• Case 2: 9X = 9 A 02 < 9 

Since 9 = 6\ and 9 > 02, then the image of p does not lie on the edge Vi(p(vi). 
But 9-i < 92, since <p(vi) is the next vertex to V{. Then V{ is a closed point from 
p. Therefore, the image of p is a vertex u;. 

• Case 3: 9X<9A92 = 9 

Since 9 > 9X and 9 = 92, then the image of p does not lie on the edge u,-y>(u,-). 
But #i < #2, since y(u;) is the next vertex to u;. Then <p(vi) is a closed point 
from p. Therefore, the image of p is a vertex y(u,). 

43 



This gives a proof of Eq. III.ll. in other words, pim occurs on a vertex of B. □ 

Since there are no vertices in the interior of a convex polygon B, then by 

Theorem III.l we obtain the following corollary. 

Corollary III.l For any point p £ free(B) and a convex polygon B, there exists only 
one image from p to a convex polygon B. 

3.      The Image Type Algorithm 

Convex Polygon B 

Point p 

Find Convex Image 

Algorithm 

Image Type (Edge or Vertex) 

Vertex v 

Orientation from p to image 

Closed Distance 

Figure 26. Image type 

We now describe the construction of an algorithm for image type. The block 

diagram for finding image type is shown in Figure 26. The inputs are a convex 

polygon B and a point p G iree(B). The outputs are an image type (vertex type or 

edge type), a vertex u,-, the orientation from p to its image, and the closed distance 

from p to the image. For a vertex type image, vertex ut- is the image of p on B, but 

for an edge type image, the image of p on B lies on an edge u,<£>(u,). In pseudo-code 

the method is as follows: 

44 



Convex-Image{p, B) 

Input:     point p (e free(ß)) 
convex polygon B = {vj, • • •, vn) 

Output: image image type (vertex-type or edge-type) 
vertex v 
orient (the orientation from p to image) 
closed (the distance from p to image) 

begin 
1. v := first-vertex(B) 
2. ***   find clockwise tangential(v)   *** 
3. while (~ ccw{p,v,(p~1{v))A ~ ccw{p, v, <p{v))) 
4. v = (p{v) 
5. ***   find image type   *** 
6. while(l) 
7. 
8. 
9. 
10. 
11. 

6: 

02 
if 

= *(v, ¥>(t;)) + § 
= ${p,v) 

{{0i < 0) A {02 < 0)) 
then 

12. image.type = VERTEX 
13. 
14. 
15. 
16. 

vmage.posi = v 
image.orient = 6\ 
image.closed = Compute_Euclidean_Distance(p, v) 

else 
17. 
18. 

if ((0X > 6) A {62 < 0)) 
then 

19. image.type = EDGE 
20. 
21. 
22. 
23. 

vmage.posi = v 
image.orient = 0 
image.closed = Compute_Dist(p, v) 
else 

24. 
25. 
end 

v = <p{v) 
return image 

The algorithm simply loops until the image is reached (line 25).   First, the 

algorithm loops until cw-tangential vertex is reached (lines 3-4). Hence, in each loop 

45 



(line 6), we check the condition for vertex type (line 10). If the condition is not 

satisfied, the condition for edge type is checked (line 17). Also, if it is not satisfied, 

we take the next vertex (line 24). We continue in this process until one of the above 

conditions (line 10 or line 17) is satisfied. 

The subroutine Compute_Euclidean_Distance computes the distance be- 

tween two points (see Eq. III.4). The subroutine ComputeJDist computes the clos- 

est distance from p to its image which lies on an edge. The subroutine for Com- 

pute_Dist is as shown below. 

Compute JDist (p, v) 
Input:     point p (e free(B)) 

v first vertex of edge where the image on it 

Output: closed        the closet distance from p to image 

begin 
1. area = Compute_Area_Triangle(p, v, <p(v)) 
2. dist = ComputeJEuclidean _Distance(t/, <p(v)) 
3. closed = ^f* 
4. return closed 
end 

The subroutine Compute_Area_Triangle computes the area of triangle (see 

Eq. III.3). 

a.        Proof of Correctness of the Algorithm 

To prove the correctness of the above algorithm, we want to show that 

the algorithm always returns an image structure when the while-loop in line 6 is 

executed. In other words, the while-loop in line 6 is never executed forever. 

Assume that v\ is the starting vertex of polygon B (Figure 27). Since 

Ü3 is cw-tangential, the while-loop in line 3 returns v = i>3. It follows that, at the 

beginning of the while-loop in line 6, v will be checked to determine the image type. 

46 



cw-tangential 

ccw-tangential 

Figure 27. Correctness of image type algorithm 

If the conditions in lines 10 and 17 are not satisfied, we take the next vertex, as shown 

in line 24. In the worst-case, we continue in this process until vertex v = u. Vertex 

v is ccw-tangential, but the condition in line 10 will be satisfied (#i < 0 A 02 < 9). 

It follows that the algorithm returns the image type of point p as vertex type and 

vertex v. This proves that the while-loop in line 6 is always terminated. 

b. Analysis of the Worst-Case Time Complexity of the Al- 

gorithm 

The operations in lines 1, 4, and 7-25 each takes 0(1) time. The loop 

from lines 3 through 4 will be taken 0(n) time in the worst-case. The loop from lines 

6 through 25 will be taken 0(n) time in the worst-case. The overall running time of 

the algorithm is 0(n). 

47 



F. FINDING AN IMAGE ON A NONCONVEX POLY- 
GON 

iriÜ 

0im2 

,t0iml                 TS>         ejm3
1( 

eim4 

;iöi3 

im4 

Figure 28. Image of a point p on cw concave polygon B 

Figure 29. Image of a point p on ccw concave polygon B 

Suppose we have an outermost nonconvex cw polygonal boundary (Figure 28) 

or nonconvex ccw polygon obstacle inside the boundary (Figure 29). Let a point p £ 

free(B). In the case of an outermost nonconvex cw polygon, there is more than one 

image. The image always lies on an edge of B. In the case of nonconvex ccw polygon, 

there may be one or more images depending upon the position of the robot.   The 

48 



image may be one of the vertices of B or it may lie on an edge of B. We have the 

following observations. First, the image may be behind the vehicle. For instance, 

in Figure 28, pim3 and pim4 are behind the vehicle. In this case, this can not be an 

image. 

The following remark illustrates how we can know whether the image is behind 

a vehicle. Let 6 denote a vehicle's heading (the direction from p) and let ty(p:pim) 

denote the direction from p to pim. 

Remark III.l  Given a nonconvex polygon B and a point p G free(B). 

(I) If 
|*(*-¥(p,ftm))|<£ (IIL12) 

then the image of p is usable. 

(H) if 

|*(*-*(p,l*m))|>f 

then the image of p is behind the vehicle. 

The second observation, for the usable image (Eq. 111.12). The following re- 

mark illustrates how we can know if the image is on the right, left or front of the 

vehicle. 

Remark III.2  The real image is of one of the following three types. 

(V If 
$(6-V(p,Pim))>0 

then the image of p is on the right of the vehicle. 

(II) If 
$(0-y(p,Pim))<O 

49 



then the image of p is on the left of the vehicle. 

(HI) If 
$(0-#O>,pim)) = o 

then the image of p is on the front of the vehicle. 

To summarize: in the case of a nonconvex polygon, we conclude that 

1. We need an another algorithm to find the image(s). 

2. We need another data structure for the image. In this case, we may have one 
or more images. Therefore, we need an array of image structures. The size of 
this array is the maximum numbers of images. 

3. If the initial orientation, 0, of the vehicle is in the opposite direction to the 
desired motion of the vehicle, then we cannot use lemma ULI to reject the 
image which lies behind the robot. 

According to above, the use of subpolygons when the world has nonconvex 

polygons will let us use the same algorithm for convex polygons (see Subsection 3) 

and the same data structure for image (see Chapter VIII). 

50 



IV.        PATH CLASS REPRESENTATION 
USING VORONOI DIAGRAMS 

The global path planning problem is the problem of finding the optimum path 

class to connect given start and goal configurations. The idea of Voronoi diagrams 

plays an important role in solving this problem. This chapter presents a method to 

symbolically represent the path classes in a polygonal world. It is developed with 

the objective of providing useful information to the local motion planning, with an 

emphasis on safely navigating through free space with smooth motions. The dis- 

cussion and analysis given in this chapter are related to one of the most important 

aspects of the motion planning problem in robotics, i.e., the connectivity of geomet- 

rical objects. The motivation of this approach arises from the following observation. 

Steering-function control rules exist for line, circle and parabola tracking, as well as 

for two lines, two points, and vertex tracking (see Chapter VI). Parallels exist be- 

tween these rules and physical obstacles from which the sensors obtain returns when 

the robot travels down an office corridor. A vehicle moving in hallways recognizes the 

left and right walls. This traversal path can be described in terms of left and right 

obstacles. Since closer obstacles present the most immediate threat to the robot's 

safety, then we should be most concerned with these. This will also aid in focus- 

ing the attention of sensors on those obstacles. The Voronoi boundary gives us the 

idea that the motion will be considered safer if it stays further away from obstacles. 

The motivation behind this method is to try to link the path class definition to the 

major obstacles of the world that the robot sensors would use. Prior to examining 

this method, background information on path classes and Voronoi diagrams will be 

addressed. Second, the path class representation using directed v-edges squence is 

developed as a decomposition for use with a local motion planner. Third, the short 

comings of using a polygonal world, and their solution using the idea of subpolygons, 

will be discussed. Last, the advantages of using the path class representation using 

51 



the directed v-edges sequence are presented. 

A.     PATH CLASSES 

A path f in a world W is a continuous function 

/:[0,l]-»/ree(W) 

with /(0) 7^/(1). We consider a path / to be a directed curve with natural direction 

from /(0) to /(l). The two points /(0) and /(I) are called its endpoints and we say 

that the path joins them. We usually denote /(0) as a start S and /(l) as a goal G. 

Figure 30 is an example of a world with three ccw polygons Bi,B2 and B3, one cw 

polygon B0, and paths from S to G. 

Figure 30. A world and paths 

It is clear that, in any connected space, the set of paths between any two 

points is infinite. In order to simplify the problem of choosing a path, we want to 

group paths that are, in some sense, alike. Before we give a formal definition, we 

present an intuitive idea of what makes two paths similar. In Figure 30, we see that 

paths /i and /2 are somewhat similar in that they both go to right of Bi,B2 and Bs. 

Another observation is that there is no polygon between them. Notice, however, that 

52 



B\ and B2 are between f\ and /3. Based on these observations, we might conclude 

that /1 and $2 should be grouped together, and also fz and f±, but /5 should be in a 

group by itself. The relation of homotopy provides a formal method for making these 

groupings [13]. 

Consider two paths in the robot's world, say / and g, with common endpoints. 

We say that / is homotopic to g, written f — g, provided there is a continuous function 

H : [0,1] x  [0,1] -+ /ree(W) 

which satisfies these equations: 

H(t,0) = f(t) V*G[0,1] 

H(t,l) = g(t) Vie [0,1] 

H(0,s) = /(0) = g(0) V*€[0,1] 

H(i,s) = /(i) = 9(i) v*e[o,i]. 

In other words, H is a function that allows us to continuously deform one path into 

the other without crossing an obstacle, with both endpoints fixed. Furthermore, 

homotopy defines an equivalence relation on the set of paths which partitions them 

into a collection of homotopy classes or path classes [13]. We will use this relation to 

reduce the problem of path selection by considering a finite set of path classes rather 

than an infinite set of paths. In Figure 30, /1 = fa and f3 = /4. 

The concept of homotopy class or path class is essential in motion planning 

[26]. Consider typical missions for an autonomous vehicle such as 

• Given start and goal configurations, a vehicle finds the best path class and 
executes a motion in the path class, 

• A vehicle is hugging right (or left) walls, 

• A vehicle is browsing randomly in the free area, 

• A vehicle is following a walking person, or 

• A vehicle is looking for an office that has the light on. 

53 



In each of these missions, one path class is found through some algorithm. We consider 

the problem of how to symbolically represent path classes. In order to symbolically 

represent path classes and to make the navigation task easier, one of the following 

methods can be used to decompose the world W: 

1. Borders (see [36, 47]) 

2. Generalized Voronoi diagram (we will discuss this method in this cxhapter) 

3. Shortest paths 

B.     THE LOCUS APPROACH TO PROXIMITY PROB- 
LEMS: VORONOI DIAGRAM 
Proximity or closeness is one of the most essential concepts in robotics. This 

concept, for instance, is related to safe motion of a robot in a given environment. In 

a simple hallway, its "center line" has the obvious meaning. A Voronoi boundary is 

a generalized version of a center line in a complex geometrical configuration. Our 

interest in this dissertation is in using the idea of Voronoi diagram to simplify the 

planning of collision-free paths for a robot among obstacles. The Voronoi diagram, as 

usually defined, is a strong deformation retract of free space so that free space can be 

continuously deformed onto the diagram. This means that the diagram is complete 

for path planning, i.e., searching the original space for paths can be reduced to a 

search on the diagram. Reducing the dimension of the set to be searched usually 

reduces the time complexity of the search. Secondly, the diagram leads to robust 

paths, i.e., paths that are maximally clear of obstacles. 

1.      Definitions 

Assume there are n > 1 different polygons in a world W: 

W = {Bi,---,Bn}   n>\ 

Definition:  The Voronoi region V{Bi) of polygon Bi in W is the the set of points 

whose images are on it. 

54 



Definition:   The union of all region boundaries is called the  Voronoi diagram of a 

world. 

V{W)=   U   V(Bi)   Ki<n 
B,€VV 

Definition: The boundary of the Voronoi regions is called Voronoi boundary. There- 

fore the Voronoi boundary of a world is the set of points that have at least two images 

on distinct objects. 

Definition: The common boundary of two Voronoi regions is a Voronoi edge. 

Definition: Two Voronoi edges meet at a Voronoi vertex; such a point has three or 

more nearest neighbors in the world W. 

We know that 

1. the Voronoi boundary of two points is a line, 

2. the Voronoi boundary of two lines is one or two lines, and 

3. the Voronoi boundary of a point and a line is a parabola. 

For more details, see [36, 59, 44]. In the following subsection, we are going to show 

the Voronoi diagram of a world W consisting of a polygon. 

2.      Voronoi Diagram of Polygon 

We consider a world W that has only one ccw polygon B. An image im(p, B) 

of a point p 6 free(5) to B is the closest point from p on B. The image is a vertex 

on B or on an open edge e in B (an open edge does not include both endpoints) (see 

Figure 31). In this case, a polygon is regarded as the union of vertices and open 

edges. 

Each point p G free(5) can be characterized by whether the image im(p, B) 

is one of the vertices of B or on any edge of B. The Voronoi region of a vertex, 

55 



im(p,,B), 

Figure 31. Images on a polygon 

such as V(vi) in Figure 32, is said to be vertex type, and that of an open segment, 

such as V(ei) in Figure 32, is said to be edge type. Suppose p is the position of a 

moving vehicle. Then its image moves when p is in an edge type region, but the 

image does not move when p is in a vertex region. This fact is important in local 

motion planning. An example of the Voronoi diagram of a ccw polygon is shown in 

Figure 32. In this polygon, there are five vertices and five edges, and hence there are 

ten Voronoi regions. 

V(v4) 

3     V(ej) 

e2   \V(v3) 
/ X 

V(V, )   / M 

v(ei)     ;
v2\ v^r 

/ * 
/   V(v2)    % 

Figure 32. Voronoi diagram of a ccw polygon 

56 



If a world W consists of cw polygon B, its Voronoi diagram is shown in Fig- 

ure 33. Another example is shown in Figure 34. For a concave vertex v, its Voronoi 

region V(v) is the empty set. 

Figure 33. Voronoi diagram of a cw polygon (I) 

directrix of parabola 1 

directrix off 

parabola 2 

V(ej> vftp 

focus of parabola 1 

and parabola 2 

Figure 34. Voronoi diagram of a cw polygon (II) 

57 



C.     POLYGONAL WORLD AND PATH CLASSES 
B0: . 

i^'f i *■.■'■■■ B, 

Figure 35. Polygonal world 

Consider a world W which consists of a finite number of polygons n, i.e., 

W = {B0,B1,---,Bn},   n>0, 

where Bo is a cw polygon, and ccw polygons I?i, • • •, Bn are considered to be obstacles 

for the robot (see Figure 35). 

For a point p £ free(W), the distance d(p, Bi) from p to a polygon B{ is defined 

in Eq. III.5. The Voronoi region V(Bi) of a polygon Bi in W is defined as 

V(B{) = {pefree(W) | (Vj)[(i ^ j A 1 < j < n) - [dfaBi) < rf(i»,^)]]}   (IV.l) 

For instance, Eq. IV.l means that any point within free(W) has its image on the 

two polygons. The Voronoi diagram of world W consisting of three polygons is 

shown in Figure 36. The Voronoi boundaries of W shown in Figure 36 consists of 

line segments and parabolic arcs. Note that the intersection where three or more of 

Voronoi boundary segments meet is called a v-node. A Voronoi boundary segment(s) 

between two v-nodes is called a v-edge. For example, there are two v-nodes and three 

v-edges as shown in Figure 36. 

58 



Figure 36. Voronoi diagram of polygonal world (I) 

Each undirected v-edge £ is the boundary of two Voronoi regions, V(Bi) and 

V(Bj). We denote an undirected v-edge £ by 

t = [Bi : BS], 

where [Bi : Bj] and [Bj : Bi] are considered the same. For example, in Figure 36, the 

undirected v-edge between the two v-nodes vi and u2 is £ = [B\ : B2] or ( = [B2 : B\]. 

In Figure 36, there are three undirected v-edges [Bi : B0], [B\ : B2], and [B2 : Bo]. 

Another example is shown in Figure 37. In this example, a world W consists of five 

polygons B0,Bi,B2, B3 and B4. There are five v-nodes and eight undirected v-edges 

[Bt : Bo], [Bi : B2], [B2 : 5b], [B2 : 53], [Br : 54], [54 : 50], [53 : 54], and [53 : 50]. 

1.      Directed v-edge 

Each undirected v-edge is the boundary of two Voronoi regions, V(Bi) and 

V(Bj). In this case, 

[Bi: Bj] = [Bj : Bi]. 

Now, we consider the directed v-edge. Once the directed v-edge is given, the 

concepts of left and right images take on meaning. This will aid in using the world 

59 



SäBä 

Figure 37. Voronoi diagram of polygonal world (II) 

data to capture the spatial relationship between the objects in the world. We have 

two types of directed boundaries: 

1. Directed boundaries of two polygons are the same (ccw): 

There are two opposite directions on an undirected v-edge [Bi : Bj]. One 
direction goes ccw with Bi and cw with Bj. The other direction goes cw with 
B{ and ccw with Bj (see Figure 38). 

2. Directed boundaries of two polygons are different (ccw and cw): 

There are two opposite directions on an undirected v-edge [Bi : Bj]. One 
direction goes ccw with Bi and cw with Bj. The other direction goes cw with 
Bi and ccw with Bj (see Figure 39). 

Now, we denote directed v-edge £ by 

£ = WBj], 

where Bi and Bj refer to the left and right polygons respectively.  It is clear that 

[Bi/Bj] and [Bj/Bi] are not the same. Although the assignment of left and right is 

60 



JL 

Figure 38. Defining directed v-edge for the same directed boundaries (ccw polygons) 

arbitrary, it is fixed for all times once set.  For consistency in this dissertation, left 

and right polygons will be the first and second terms in directed v-edges, respectively. 

The following is the result of the previous discussion of directed v-edge. 

Lemma IV. 1 In a polygonal world W, where W is encircled by an outermost cw 
polygonal boundary and has n (n > 1) ccw polygonal obstacles inside the boundary, a 
directed v-edge consists of two different polygons. 

Figure 39. Defining directed v-edge for different directed boundaries (cw and ccw) 

61 



2.      Canonical Paths and Directed v-edges Sequences 

Figure 40. Paths and canonical paths 

A robot can work only in the free space, free(W). A path f in a world W is a 

continuous function 

/:[0,l]->/ree(W) (IV.2) 

Consider the problem of finding a path from a start configuration, S, to a goal 

configuration, G in a polygonal world W (see Figure 40, where ccw polygons J5i and 

2?2 are considered as obstacles for robot in this world and a world has one cw polygon 

B0). It is desired to connect the start configuration, 5, to the goal configuration, (?, 

using a continuous, smooth path. There are infinitely many distinct paths connecting 

S and G. However, actually, we need to compare only paths which satisfy a special 

property. 

Definition: A path II is called a canonical path if there exists a sequence of directed 

62 



v-edges such that 

n = 5,& ••• £ksg    k>l, (IV.3) 

where 

• the right hand side of Eq. IV.3 is the concatenation of k -f- 2 subpaths, 

• the subpath ss is the shortest path from S to £1, 

• 6. • • • 6c is the sequence of directed v-edges, and 

• the subpath sg is the shortest path from &. to G. 

For example, in Figure 40, 

n = s^lBoWB&BilBsWBolBzW 

The following is the result of the previous discussion of the canonical path. 

Lemma IV.2 ; For a given W, S, and G, a canonical path IT is the only one among 
all the paths in a homotopy class which satisfies the following conditions: 

1. the subpath connecting S to first directed v-edge is the shortest one, 

2. sequential pieces from one directed v-edge to the next, and 

3. the subpath connecting the last directed v-edge to G is the shortest one. 

Proposition IV.l ; For a given W, S, and G, for paths /i and f2 in a homotopy 
class, if fi —* III and fi —► n2 then 111 = 112. 

Proof. Assume that the hypothesis is true. Since /i and III are homotopic, there is a 

continous function H which transforms /j into 111. Also, there is a continous function 

H which transforms fi into II2. By Lemma IV.2, there is only one canonical path II 

among all paths in a homotopy class. It follows that III = 112. □ 

Definition: A directed v-edges sequence E is a finite sequence of directed v-edges such 

that no subsequence of [Bj/Bj] [Bj/Bi] is a part of it. 

63 



4:©« 

Figure 41. Interpretation of canonical path as directed v-edges sequence 

By definition, if II is a canonical path, then II = ss E sg (See Figure 41), where 

E is 6 • • • &. 

Several examples of directed v-edges sequences are illustrated in Figures 42 

and 43. For example, the directed v-edges sequences for the above figures are as 

follows: 

E = [Bi/MBi/BtWMBo/Bs]     (Figure 42) 

E = [B1IB0][BAIB0}{B3IB0}     [Figure 43) 

Proposition IV.2 : In a homotopy class, for all paths f\ and f2, /i = /2 if and 
only if Et = E2. 

Proof. 

First prove the sufficiency. Assume Hi = E2. If Hi = E2, each path has a 

sequence of the same directed v-edges. Furthermore, in a homotopy class, both paths 

have the same left and right polygons. Each path is a concatenation of pieces. These 

64 



Figure 42. Directed v-edges sequence (I) 

pieces connect the start configuration to the first directed v-edge in E. the sequential 

pieces from one directed v-edge to the next, and the last directed v-edge to the goal 

configuration. We can easily construct H to transform f\ into /2 piece by piece 

without running over any obstacles. The transformation, H, is the composition of 

the sequences of the transformations shown. Hence, the paths are homotopic. 

To prove the necessity, assume fj = f2. We are given a path /x. Consider 

a directed v-edges sequence Hi of /x. Since /i and /2 are homotopic, there is a 

continuous function H which transforms /i into /2. Since H(s,t) is a continous 

function, each directed v-edge £, which has left and right polygons, continuously 

concatenates with the next £ over s ast moves when transforming /j into /2. However, 

there is no way in which /2 can eliminate, insert or repeat any £ other than in the 

monotonic sequence of f\. H(s,t) can neither destroy existing nor create any new £, 

because H(s,t) € free(W) and H(s,t) is continuous. Therefore Hi = E2. O 

From above, we can conclude that 

65 



A 

Figure 43. Directed v-edges sequence (II) 

1. A directed v-edges sequence E is unique for paths which are not homotopic. 

2. A directed v-edges sequence E is a symbolic representation. 

In Chapter VI, we will show that the advantage of using directed v-edges 

sequence E for local motion planning. 

3.      Connectivity Graph 

We make the following observations about the world in Figure 36. Three 

Voronoi boundary segments intesect in one node (v-node). There is one line segment 

between two v-nodes (v-edge). Each v-node operates in both directions, and no 

v-node has a v-edge to itself. 

Definition: A basic connectivity graph G = (V, E) consists of V, a nonempty set of 

v-nodes, and E, a set of unordered pairs of distincts elements of V called undirected 

v-edges.  Consequently this figure can be modeled using a basic connectivity graph, 

66 



consisting of vertices which represent v-nodes, and undirected edges, which represent 

undirected v-edges, where each edge connects two distinct vertices. 

0VBo] [B2:B0] 

Figure 44. Basic connectivity graph of a polygonal world (I) 

Figure 45. Basic connectivity graph of a polygonal world (II) 

67 



The basic connectivity graphs generated by the world in Figures 36 and 37 are 

shown in Figures 44 and 45. 

Now we will explain how to represent a path class (see subsection 4). 

4.      Path Class Representation 

...... .„.„.v.™,.w,„.v,.,v...v,.v,^ 

Figure 46. Polygonal world (I) 

Consider the problem of finding a path from a start configuration, S, to a 

goal configuration, G in a polygonal world W (Figure 46). It is desired to connect 

the start configuration, S, to the goal configuration, G, using a continuous, smooth 

path. In Figure 46, there are four different path classes. Consider the problem of 

how to symbolically represent each path class. A method based on directed v-edges is 

presented. Given start and goal configurations, we add two new nodes, S and G, to the 

basic connectivity graph to obtain an augmented connectivity graph. The augmented 

connectivity graph generated by the world in Figure 46 is shown in Figure 47. In 

Figure 47, there are four different path classes. In its most general form, a path class, 

7T, is symbolically represented by a sequence of directed v-edges. For instance, four 

typical path classes in Figure 47 are represented by: 

TTj   =   [Bo/Bt] [B0/Bt] 

68 



Figure 47. Augmented connectivity graph of a polygonal world (I) 

TT2 = [Bo/BAiBs/BAiBt/Bo] 

7T3 = [BJ/Bo][B1/Bt][B0/Blt] 

7T4   =   [BJBoWBtlBo] 

Another example is shown in Figure 48. The augmented connectivity graph generated 

by the world in Figure 48 is shown in Figure 49. In Figure 49, there are twelve different 

path classes which connect S with G: 

*i = [Bo/B^iBo/B^iBo/Bs] 

T2 = [Bo/BAlBo/BdlBs/BAiBs/BdlBs/Bo] 

7T3 = [Bo/Bi][Bo/Bg][Bs/Bt][B4/B1][B4/Bo][B3/Bo] 

7T4 = [Bo/B1][Blt/B1][Bi/B3][Bg/Ba} 

7T5 = [Bo/B^lBs/BAlBs/BAiBs/Bo] 

TT6 = [BolB1}[B2IB1)[B4lB1}[BJBo]\BslBo] 

7T7 = [B1/B0][B1/B4)[B1/Bt][Bo/Blt][Bo/Ba] 

69 



Figure 48. Polygonal world (II) 

TS   =   [B1/B0][Bt/B4}[Bs/B3}[B0/Bs] 

TT9   =   [B1/B0][B1/B4][B3/B4][Bs/Bo] 

n10   =   [Bt/Bo][B4/B„][Ba/B0] 

mi   =   [B1/Bo][B4/B0][B4/B3][Bs/Bs][Bo/Bs] 

7Ti2   =   [B1/Bo][B4/B0][B4/Bs][B1/Bs)[Bo/B2}[Bo/Bs] 

5.      Finding the Best Path Class 

In this subsection we outline how to find the best path class. Finding the 

best path class from start configuration, 5, to goal configuration, (7, in the world 

is transformed into the minimum cost path finding problem from S to G in the 

augmented connectivity graph. The augmented connectivity graph uses a weighted 

edge whose value depends upon the mission-based cost function associated with the 

v-edge. For instance, a cost for the edge is defined as the energy (or time) for the 

vehicle to make a motion from one v-node u, to another v-node VJ. This cost not 

only reflects the distance, but the turns needed to make the motion.   It may also 

70 



[Bo/BJ 

Figure 49. Augmented connectivity graph of a polygonal world (II) 

reflect the safety (i.e., if the region is narrow, the cost is high). Dijkstra's algorithm, 

or a All-pairs shortest paths, can be perfectly applied to this global motion planning 

problem. As its result, the best path class in terms of a sequence of directed v-edges 

is obtained. The computation time is 0((n + m)log n) using a priority queue, where 

n and TO are the numbers of v-nodes and the number of the directed v-edges in the 

augmented connected graph respectively. Once the path class is found, it is passed 

to a routine which ensures the vehicle will follow the path class to reach the goal. 

6.      Following the Path Class 

Once the path class is found, it is passed to a routine which ensures that 

the vehicle will follow the path class to reach the goal. The choice of the mission 

type ultimately affects which steering function (for steering function definition, see 

Chapter V) is used to guide the vehicle. For example, one mission is to travel down 

71 



the center of a hallway and remain at a user-specified distance from the corners when 

executing a turn into another corridor. 

D.     PATH CLASSES AND SUBPOLYGONS 

The objective of path classes using polygonal world is to provide useful in- 

formation for local motion planning. The directed v-edges sequences, E, of a world 

W which consists of a finite number of polygons n is independent of the position of 

the vehicle inside the free(W). For example, in Figure 50, suppose the path class 

7T = [B-I/BQ] [B2IB0] and the start configuration of the vehicle are given as shown. 

Also, we know any point within free(W) has its left and right images on the two 

polygons. We proved in Chapter III that there is only one image of a point which 

lies in free space to a convex polygon and more than one image for a non convex 

polygon. When representing the path class using a polygonal world, we have the 

following disadvantages: 

1. In Figure 50, B\ and B2 are ccw convex polygons and a Bo is cw nonconvex 
polygon. When the vehicle navigates the given path TT, left image is im3 and 
its right images are imi and im,2. Since the start orientation of the vehicle is 
0, as shown in Figure 50, the right images are im,\ and im4, but im2 is behind 
the vehicle. 

2. If there is ccw horse-shoe polygon in the world, how can we know which image 
is on the left and which is on the right on the same polygon (see Figure 51)? 
In this case, £ = [Bi : Bi]. 

3. We can not construct the connectivity graph if a world VV consists of two poly- 
gons BQ and Bi, where W is encircled by an outermost cw polygonal boundary 
B0 and has one ccw polygonal obstacle Bi inside the boundary (Figure 52), 
since every v-node of the connectivity graph is the common intersection of 
three or more Voronoi boundary segments. 

Due to the above shortcomings, we need more information when we represent the 

path classes in order to simplify local motion planning. The use of the subpolygons 

(see Chapter III) will solve the above problems and give more information for the 

local motion planning task. 

72 



Figure 50. Problem 1: initial orientation of a vehicle is different from the direction 
of a motion 

Consider the same world W in Figure 36. The nonconvex polygon B0 can 

be broken into four subpolygons B0o, B01,B02, and BQ3 (see Figure 53). The basic 

connectivity graph generated by the world in Figure 53 is shown in Figure 54. There 

are six v-nodes (u1? • • •, t>6) and seven undirected v-edges: 

[Bj. : .Boo], [Bx : B01], [Bx : B03], [B2 : B01], [B2 : £02], [B2 : B03, [Bx : B2]. 

*m>M 0     -:   ■;:.;■,,,..,, 

1 

»1 

[B^BJ 

\— 
} left &right 

V —-- 
^^   images on th e 

n same polygo 

Figure 51. Problem 2: directed v-edge of a concave polygon 

73 



Figure 52. Problem 3: Voronoi diagram of polygonal world consisting of two polygons 
(ccw polygon inside cw polygon boundary) 

Now, assume that a start configuration, S, and a goal configuration, G, are 

given in free(W) (see Figure 53). The augmented connectivity graph generated by 

this world is shown in Figure 55. In Figure 55, there are four different path classes 

represented by a directed v-edges sequences as follows: 

71"!   =   [Boo/Bi] [Bos/Bi] [Bos/Bs] [B02/B2] 

K2   =   [Boo/Bi] [B03IB1] [Bz/Bt] [Bg/Boi] [B2/B02] 

Figure 53. Solution of probelm 1: Voronoi diagram of a subpolygonal world 

74 



IB, %] 

o © 
[B2:%] 

IB.%1 

& 

[B2%] 

Figure 54. Basic connectivity graph of a subpolygonal world 

7T3   =   [B1/Boo][B1/Boi][B1/Bi][BM/Bt][Boe/Bt] 

7T4   =   [B1/Boo][B1/B01][B2/Bo1}[B2/B02) 

As a result, the use of subpolygons solves the problem when the start orien- 

tation of the vehicle is different from the direction of the motion. In other words, 

path classes represented by subpolygons possesses more information for local motion 

[BOJ/BI 1 [BM/B, 1 

/BJ 

[B0l/Bl ] [B01/B21 

Figure 55. Augmented connectivity graph of a subpolygonal world 

75 



planning than do those represented by polygons. 

B„ 

'02 

Figure 56. Solution of problem 2: up and down directed v-edges (I) 

Now, we will discuss how we can solve the problem of a horseshoe-shaped 

polygon in the world. In Figure 51, polygon B\ is decomposed into subpolyogons Bn 

and Bi2 (see Figure 56). In Figure 56, 

Bu = {v3, v4} 

and 

#12 = {V4,   VB,  «e,  «7,   «8,  «l,  V2,  V3} (IV.4) 

are two subpolygons. 

Another example is shown in Figure 57. Polygon B\ is decomposed into four 

subpolyogons Bn, B12, #13, and Bi4 where: 

Bn = K, «6} 

Bn = {*>5, v6} 

B\z = {*>6, V7} 

B\A = W, *8, »   »4> (IV.5) 

76 



B 
.0.3. 

BI 

B 14 

m 

B B 
n 12 B 

V 

13 

V 

S  = ^MD 1*140 1 

IB 02 

SS: ör 

Figure 57. Solution of problem 2: up and down directed v-edges (II) 

We have the following observations. In Eq. IV.4 (Figure 56), The first and last 

vertices of subpolygon B\2 are v4 and vs respectively. The right image is on the edge 

whose first vertex is u4 {v4ip{v4)). The left image is on the edge whose second vertex is 

V3 (v?-1^)^)- In Eq. IV.5 (Figure 57), The first and last vertices of subpolygon Bu 

are v-j and v4 respectively. The right image is on the side whose first vertex is vr- The 

left image is on the side whose second vertex is v4. According to above observations, 

we have the following definition: 

Definition: If left and right images are on the same subpolygon, then the directed 

v—edge is defined as follows: 

C = [Bio/Biu] 

or 

£ = [Biu/Bin] 

77 



where B$j is subpolygon i associated with its first vertex and Bin is subpolygon i 

associated with its last vertex. 

For instance, in Figure 56, 

£ = [BUD/BI2U] 

where B\2B is the left side of subpolygon B12 (subpolygon B12 and last vertex v3) 

and B12U is the right side of subpolygon Bi2 (subpolygon B\2 and first vertex v4). 

In Figure 57, 

6 = [BI4D/B14U] 

where Bi4D is the left side of subpolygon Bi4 (subpolygon Bi4 and last vertex t>4) 

and B\4XJ is the right side of subpolygon B\4 (subpolygon B\4 and first vertex vj). 

The problem of constructing a connectivity graph when a world W consists 

of only two polygons Bo and B\ is solved by using the idea of subpolygons (see 

Figure 58). In Figure 58, there are two different path classes: 

7T!   =   [BoilBAlBoolBtWBoslBt] 

7T2   =   [Bj/Boi] [Bi/Boz] [Bi/Bos] 

E.     ADVANTAGES OF PATH CLASS REPRESENTAION 
USING DIRECTED V-EDGES SEQUENCES 

There are several advantages. They include: 

1. A unique representation of a path class. In other words, this representation is 
unambiguous since a directed v-edge is defined by the "closest" two obstacle 
features. 

For example, in Figure 59, the directed v-edges sequence E is 

S= \B1IB0][B1IB4\[B2IB3}[B0IB5]. 

In directed v-edge £ = [B1/B4], the directed boundaries of B\ and B2 are the 
same (ccw). The path direction goes ccw with left polygon B\ and cw with 
right polygon B4, then a left turn is required. 

78 



[Bi/^] 

fBc/B,] 

Figure 58. Solution of problem 3: world and augmented connectivity graph 

In Figure 60, the directed v-edges sequence H is 

S=[51/Bo][B4/5o][B3/Bo]. 

In directed v-edge £ = [B4/B0], the directed boundaries of B% and BQ are 
different (ccw and cw). The path direction goes ccw with left polygon B4 and 
cw with right polygon Bo, and no turn is required. 

2. It is an exact free space decomposition, so that if a path exists, the local 
motion planning should be able to find it. 

3. It simplifies the planning of collision-free paths for a robot among obstacles 
once the directed v-edge sequence in which the robot is located is identified. 

4. The local motion planning problem becomes simpler if a path class representing 
by directed v-edge sequence is given. 

79 



Ai 

Figure 59. Directed v-edges sequence (left turn is required) 

*©« 

iBA 

[B3:B, 3--"0J 

B4:B0] 

Figure 60. Directed v-edges sequence (no turn is required) 

80 



V.        POLYGON TRACKING MOTION 

This chapter addresses an approach to the tracking of polygons. This new 

method is based on the fact that obstacles are present in the working environment 

and they exhibit edges and corners (vertices). When a vehicle is moving, it recognizes 

its images on these obstacles and we can know the distance between the vehicle and 

those obstacles using a function called steering function, which takes data such as 

the distances, directions to its image on the boundary, and the desired curvature (the 

concept of steering function will be discussed in Section B). Therefore, it is possible 

for a vehicle to travel in the free space along the outer boundaries of obstacles and 

to keep a certain safety clearance (safety clearance function is defined in Section C). 

Since keeping a clearance from objects is important in polygon tracking motion, the 

robot will travel along a polygon's outer edges with clearance required. But when a 

vertex is eventually met, the robot needs to change its orientation to keep following 

the object. While the robot is changing its heading orientation, it is traveling past the 

vertex of a polygon, trying to keep the required clearance from the object so that it can 

continue to perform the same motion when an edge is available again. This Chapter 

proposes a few measurements which can be used in order to choose among several 

alternative paths (see Section D). The problem of how to make smooth motion when 

the vehicle gets close to the intersection of two distinct segments will be discussed in 

Section E. We have three different tracking techniques: 

1. Edge-Convex Vertex Tracking (see Section F), 

2. Convex Vertex Tracking (see Section G), and 

3. Edge-Concave Vertex Tracking (see Section H). 

A.     PROBLEM STATEMENT 

Given a ccw (cw) polygon B, the initial configuration q = (p, 6, K) of a vehicle 

(p, 9, and K are its position, orientation and curvature respectively), a safety clearance 

81 



Figure 61. ccw tracking direction 

d0 > 0, and path direction (ecu; or cw) (see Figures 61 and 62), we are trying to find 

a path of the vehicle starting from q (Figure 63) satisfying the following conditions: 

1. Its path curvature is continuous, and 

2. The total safety cost of the path is minimized (see Section D). 

Figure 62. cw tracking direction 

82 



 » 
Polygon Tracking 

 • 

B (ccw/cw) 

1 start 
Path 

Safety Clearance  (d0) 

Path Direction (ccw/cw) 

Figure 63. Block diagram for polygon tracking 

B.     GENERAL CONCEPTS OF THE STEERING FUNC- 
TION 

The mathematical framework that is used while working with steering func- 

tions is now described. First, only curves in the two-dimensional plane are considered, 

using the Euclidean space E2 as the work space. A path will be described by a curve 

C which is a function of path length, s. By the fundamental existence and uniqueness 

theorem for plane curves, if K(S) is an arbitrary continuous function on a closed inter- 

val [a, b], then there exists one and only one curve C for which K(S) is the curvature 

and s is a natural parameter along C. Hence, the curve is completely and uniquely 

described by the initial position, orientation, and curvature K [27, 31, 63]. 

Second, a vehicle's configuration q is defined as 

q(s) = (p(s),6(s),K(s)) (V.l) 

where p(s), 9(s) and K(S) are its position, orientation, and curvature. 

Each non-holonomic vehicle has two degrees of freedom: the translational 

speed v and rotational speed u. Since a non-holonomic robot's heading orientation 9 is 

always equal to the trajectory's tangent orientation, the vehicle's rotational speed u is 

equal to KV, where n is the path curvature (because u> = dO/dt = (d0/ds)(ds/dt) = KV, 

where t is time and s is the traveling length of the robot). Therefore, the smooth 

motion planning of a robot vehicle is designing (/c, v) or (u, v) as functions of t or s. 

This control model with curvature is useful for vehicles with any kinematics [35]. 

83 



In a real vehicle's path, it is well-known that the vehicle heading direction 

and the curvature must be continous [37]. The local motion planning problem is 

therefore the problem of how to control the curvature K. One obvious method is to 

compute the curvature directly as a function of the geometrical constraints and the 

mission. However, one drawback of this method is that when some of the input has 

a discontinuity from the previous value, the output K also tends to be discontinuous. 

As widely known, rigid body motion with a discontinuous curvature function is not 

physically realizable. Curvature continuity is essential in the local motion planning 

because a discontinuity in vehicle acceleration may cause wheel slippage which will 

add to odometery errors. In order to solve this problem, we take the derivative of 

the curvature dn/ds instead of the curvature K itself as a control variable. As long as 

dn/ds takes on a finite value, the curvature continuity is guaranteed and the trajectory 

becomes smooth. Therefore, the "optimal" function / in an equation 

^ = f(E,M,q) 

for a rigid body vehicle is called a steering function, where E is the current environ- 

ment, M the mission, and q the vehicle configuration. After computing this value 

dn/ds = /, the curvature K is updated through the incremental movement As. As 

long as / is the value of finite, a vehicle's trajectory obtained is "smooth" in the 

sense that the tangent orientation, curvature and derivative of curvature exist on ev- 

ery point on the trajectory. In this mathematical model, we understand the vehicle's 

curvature is not rapidly changed, hence, we include K in the vehicle's configuration 

as shown in Eq. V.l. We adopt the following general form for the steering function 

that works in all situations we have applied: 

du 
—   =   -(aAK + bAO + cAd) (V.2) 

=   -(a(/c - Kd) + b(0 - 6d) + cAd), 

where a, 6, and c are positive constants. Also, K is the path curvature, 0 the vehicle's 

heading (which is equal to the path tangential direction), KJ. the desired curvature, 

84 



and 6d the desired heading direction. This steering function can be applied to various 

motion planning situations. The definitions of KJ, 64, and Ad are defined according to 

situations as we will see in the Sections F, G, and H. The meanings of these variables, 

An, AO, and Ad, are as follows: 

1. A/c is the difference between the current vehicle's curvature K and the desired 
curvature «;<;. 

2. A0 is the difference between the current vehicle's orientation 0 and the desired 
orientation 9d- 

3. Ad is the difference between the current and desired positions and is a signed 
number. For instance, if the robot is tracking a directed reference path, Ad is 
the signed distance from the vehicle position to the directed path. 

reference path 

image point (x, y) 

Figure 64. Geometrical concepts of steering function 

Figure 64 illustrates the geometric concepts involved with a steering function 

used to follow a reference path. The closest point on the reference path from the 

robot's configuration is called the image point. A signed distance value, Ad, is used 

to represent the shortest distance between the robot's current configuration and the 

image located in the reference path. The sign of Ac? depends on the robot's position 

relative to the reference path. When Ad > 0, the robot is to the left of the reference 

85 



path and when Ac? < 0, the robot is to the right of the reference path. Therefore, Ac? 

is a signed distance indicating how far the robot is located from a reference path. 

For details on the steering function and an argument as to why the steering 

function works, see [36]. 

c. CLEARANCE DEFINITION 

safety clearance 

Figure 65. Robot's safety clearance (I) 

In this dissertation, we take safety as the single characteristic of motions to be 

optimized. The polygon tracking problem is the one of planning a motion for a vehicle 

to track a flat wall in parallel to it with a given safety clearance (see Figure 65). If the 

distance between the robot and polygon is less than this safety clearance, the robot 

must try to make the distance to the left/right boundaries greater than this safety 

clearance using non-linear safety clearance function g(d) (see Figure 66). 

Definition: the clearance d\ is defined as the distance from the robot's outside edge 

of the wheels to the object (Figure 67). 

If d\ is supplied by sensors instead of as information extracted from the model, the 

clearance d\ indicates how far the object is from the sensor. 

86 



g(d) 
11 

-»►d 

Figure 66. Non-linear safety clearance function 

Definition: the robot's safety clearance do is defined by 

1 
do = di + —width, 

where width is the robot's width. See Figure 67. 

(V.3) 

Definition: Let d be the distance between the robot and polygon. The safety clearance 

function g(d) is defined by 

d — d0   if d < d0 

0 otherwise 
9(d) = 

where g : 1Z —> 1Z is a nonlinear function defined as in Figure 66. 

(V.4) 

D.     COMPARING PATH ALTERNATIVES 

Currently, a quantitative technique for comparing alternative paths is needed. 

Our problem is: to compare two or more alternative paths in order to select the best 

87 



wheel 

i<  
safety clearance d 0 

r 
center of the robot 

clearance d t 

width 

Figure 67. Robot's safety clearance (II) 

one. Only a few attributes may be used to describe a path. These attributes in- 

clude length, smoothness and safety. Path safety is the most important property, and 

path smoothness is desirable to ameliorate odometry errors and to decrease travel 

time along the path due to the ability to use higher velocities on paths with lower 

curvatures. Based on the stipulated mission parameters, the cost function for path 

comparison may be found. By evaluating the penalties associated with path at- 

tributes, the path which minimizes the cost function can be chosen as the best of the 

alternative paths for a given mission. 

1.      Safety Cost Function 

Generally, path safety is a function of the distance of the vehicle to an obstacle. 

As the distance decreases, the safety decreases. The safest path is one in which the 

distance to the obstacle is maximum. In many cases, a vehicle should not approach 

closer to the obstacle than the given safety range. A path is unsafe if the distance to 

the obstacle is less than or equal to zero. 

One way of planning safer paths is to maintain a constant clearance for every 

point on a path [57, 54]. However, the constant clearance method is still not ideal for 

two reasons: 

88 



1. when the vehicle is moving in a tight space, a smaller clearance may be tol- 
erated. On the other hand, when the vehicle is moving in a wider space, a 
larger clearance may be required in order to move the vehicle faster and to 
ease positional control. 

2. the initial position of the vehicle may be with null clearance. 

Another approach is using a cost for safety [64]. Here, the cost of a path is 

defined as the sum of costs for its length and for its safety. The safety component 

of the cost is a function of the integration of the distance between a point on a path 

and the center line. Therefore, this algorithm does not give any solution if the area 

is not delimited by a center line or by a Voronoi boundary. 

In this dissertation, we use the following approach. A path in free space is a 

pair (s\,f) consisting of a positive real number Si and a continuous function /. The 

length of path from the point p(0) to a point p(s) along a path(.si,/) is equal to s if 

0 < s < s\. Let 7(p) denote the distance between a point p to a polygon B. Let p(s) 

denote a vehicle position at s on the path. The total safety cost of a path(5j,/) is 

given by a positive cost function F : TZ —■» 71 defined by 

r= f b(p(s)) - do}2 ds, (v.5) 

Generally, a path farther from obstacles is safer, but tends to be longer. There- 

fore, we need to strike a balance between smoothness and safety of a path. There is 

a positive parameter <r in the steering function, which controls the smoothness of the 

resultant trajectory. If a smaller a is used, the trajectory becomes sharper and the 

path becomes safer, and if a larger a is used, the trajectory becomes smoother and 

the path becomes more dangerous. As the smoothness parameter a becomes large, 

the path converges to the smoothest path. Thus, we obtain a class of paths with 

different weight between safety and smoothness in an equivalent class. 

2.      Smoothness Cost Function 

Smoothness of path is essential for mobile robot navigation because unsmooth 

motions may cause slippage of wheels which degrades the robot's dead reckoning 

89 



ability. A path that does not posses tangential or curvature continuity surely is not 

smooth. These types of paths will not be allowed as alternative paths due to the 

severity of the lack of smoothness. In order to control smoothness of paths, we define 

the cost of a path for smoothness. A unit cost for smoothness at a point p(s) on 

a path is proposed as the square of the derivative of its curvature [37]. The total 

smoothness cost of a path is given by a positive cost function E : 72. —■> 1Z defined by 

*-£($h (V.6) 

E.     COMBINING STEERING FUNCTIONS 

Left Image 

Second Right Image 

First Right Image 

Figure 68. First and second images 

The new problem to be solved in this dissertation is that of how to achieve a 

smooth motion when the vehicle gets close to the intersection of two distinct subpaths 

(for instance from a line segment to a circle segment). In order to solve this problem, 

we will watch second images in the forward portion of a left or right boundary, and 

will make a smooth motion by evaluating the steering function using not only the 

left/right first images, but the left/right second images too (see Figure 68). That is, we 

evaluate two steering functions with the first and the second images and take a value 

by combining these two function results. Thus, resulting paths will be "smoothed" 

using an appropriate smoothness a. 

90 



First, let the weighting functions u>i and u2 are defined as: 

(V.7) uj-i    =   exp 

u>2   =   exp 

a 

a 
(V.8) 

where d\ and d2 are the distance between p and its first left (right) and second left 

(right) images respectively. These weighting functions are dimensionless. 

If a second image is far from the vehicle, the effect of its steering function is 

very small. When a second image gets closer, its steering function effect increases. 

We evaluate two steering functions with the first and the second images and take a 

value by combining these two function results by using the above weighting functions. 

For instance, consider a situation where the first left image occurs on an edge of left 

obstacle and the first and second right images occur on an edge of the right obstacle(s) 

also. Let //, /rJ, and /r2 denote the steering functions of the left, first, and second 

right images respectively. By combining the first and second right steering functions, 

we obtain 

!r = -X~/rl + -^—/,2, (V.9) 

where fr is right steering function obtained by combining fr\ and fr2. 

Now, the steering function / for left and right images is obtained by 

f = fl + fr- 

F.     EDGE-CONVEX VERTEX TRACKING 

While an image of a vehicle's position occurs on an edge of polygon and the 

vehicle is trying to keep itself away from the edge with a safety distance d0, it is 

following an edge of the polygon. We say that the vehicle in Edge—Convex Vertex 

Tracking Mode. The vehicle has two distinct images pimi = (ximi,y,mi) and p,m2 = 

(z«m2)3/»m2) and the vehicle looks at p,ml and p,m2 as the first and second images 

respectively (see Figures 69, 70).    Because an edge is a straight line, the vehicle 

91 



is supposed to track a directed straight line. By applying the steering function in 

Eq. V.2, we will evaluate two steering functions for the first and second images and 

take a new steering function value by combining these two function results using 

Eqs. V.7,V.8 and V.9. Now, we will explain how to formulate ^j, the steering function, 

in Eq. V.2 for each image. 

P 

\/\ 

e 

Second Image 

Figure 69. ccw tracking in Edge-Convex Vertex Tracking Mode 

Let the current configuration of a vehicle be defined as 

<7 = M,*), (V.10) 

where p, 0 and K describe the robot's current position, orientation, and curvature, 

respectively. 

For the first image p,mi, the variables «</i, #i, and d\ in the steering function 

(Eq. V.2) can be computed as follows. 

The desired curvature of the edge is zero because we assume the edge is flat 

like a line. 

Kdl = 0. 

92 



Second Image 

6 
/       *i 

/v 
«-■ 

p 
iml 

First Image 

Figure 70. cw tracking in Edge-Convex Vertex Tracking Mode 

Let ty(p,pimi) denote the orientation from p to pim\- The desired orientation 

6\ is evaluated as following: 

1. If the image of p on the edge is on the right of the vehicle (Figure 70), then 

0i = tf(p, p,-m,) + |. 

2. If the image of p on the edge is on the left of the vehicle (Figure 69), then 

The distance, d\, is the signed distance from the vehicle position p to its image 

Pimi. This signed distance satisfies the condition that d\ < 0 if the edge is on the 

vehicle's left side while d\ > 0 if the edge is on the vehicle's right side. In Chapter III, 

Section E, we showed how to evaluate the distance between any point in free space 

to its image on an obstacle dx. By Eq. V.4, we calculate the safety clearance function 

<7(di) as follows: 

93 



1. if the image of p on the edge is on the right of the vehicle (Figure 72), then 

d\ — do   if d\ < do 
g(di) = 0 oth erwise 

2. if the image of p on the edge is on the left of the vehicle (Figure 71), then 

di + d0   if \di | < dQ 
9(di) = 0 otherwise 

iml 

■     ^2 

■<# 

im2 

Figure 71. Calculate safety clearance function of ccw tracking 

Thus the steering function in Eq. V.2 becomes 

f1 = -(aK + b(9-6l) + cg(d1)). 

For the second imagep,m2, the variables KJ2, 02, and dfl in the steering function 

(Eq. V.2) can be computed similarly (see Figures 69, 70). 

The desired curvature K<ß is 

Kd2 = 0. 

The desired orientation 92 is evaluated as following: 

(v.ii) 

94 



Figure 72. Calculate safety clearance function of cw tracking 

1. If the image of p on the edge is on the right of the vehicle (Figure 70), then 

02 = 01- f • 

2. If the image of p on the edge is on the left of the vehicle (Figure 69), then 

02 = 01 + f • 

where 6\ is the desired orientation of the first image and a is the exterior angle induced 

at Pim2i the second image, (see Figure 69, 70). 

Similarly, we compute the distance, d2, and safety clearance function, g(d,2), 

as 

1. If the image of p on the edge is on the right of the vehicle (Figure 72), then 

( A \ — )  ^2 — do   if c?2 < do 
9[d2> ~ \ 0 otherwise 

2. If the image of p on the edge is on the left of the vehicle (Figure 71), then 

( J \ _ / ^2 + d0   if \d21 < d0 

^ 2) ~ \ 0 otherwise 

95 



Thus for the second image, the steering function in Eq. V.2 becomes 

f2 = -{aK + b(0-62) + cg(d2)). 

Now, by combining f\ and f2 using Eqs. V.7,V.8 and V.9, we obtain the total 

steering function value while the robot is in Edge-Convex Vertex Tracking Mode: 

/ = -*?-/. +-s-/.. 
U\ + U)2 "'    '    U>i + UJ2 ' 

Figure 73 shows some numerical simulation results. The following simulation 

results are obtained using different smoothness values. The effect of using distinct 

values of smoothness with cr = 5,10,20 and 40 is clearly shown in the figure. As a 

increases, the safety cost function defined in Eq. V.5 increases. 

d0 

H 

& j/ T5     cr = 5 

<J= 10 

K 
■,: So- = 20 
:'      <7 = 40 

Figure 73. Different trajectories corresponding to their safety cost function values in 
Edge-Convex Vertex Tracking Mode 

G.     CONVEX VERTEX TRACKING 

When the vehicle is coming to the end of an edge, an image of the vehicle's 

position occurs on a vertex of polygon. In this case, to keep the desired safety 

clearance from the polygon, the vehicle needs to turn around the vertex in a circular 

motion taking the vertex as its center and safety distance do as its radius. Here the 

vehicle is defined to be in Vertex Tracking Mode. In this mode, the vehicle has one 

96 



image p,-TO = (xim,yim), and the vehicle looks at p,m on its left or right as the first 

and second images (see Figures 74, 75). We will evaluate two steering functions for 

the first and second images and take a new steering function value by combining 

these two function results using Eqs. V.7,V.8 and V.9. Now, we will explain how to 

formulate -£, the steering function, in Eq. V.2 for each image. 

First Image 

Second Image 

Figure 74. ccw tracking of Vertex Tracking Mode 

For the first image p,m, the variables /c^i, 6\, and d\ in steering function 

(Eq. V.2) can be computed as follows. 

The desired curvature is the circle's radius d0 because the vehicle needs to turn 

around the vertex in a circular motion taking the vertex as its center. 

«rfi = 1/do- (V.12) 

97 



e, 

First Image 

Second Image 

v 

Figure 75. cw tracking of Vertex Tracking Mode 

Let ^f(p,Pim) denote the orientation from p to p,TO. The desired orientation Bi 

is evaluated as following: 

1. If the image of p on the vertex is on the right of the vehicle (Figure 75), then 

01 = *(P, Pirn) + \- 

2. If the image of p on the vertex is on the left of the vehicle (Figure 74), then 

01 = *(p, Pim) - 
IT 

Pi 

The distance, d\, is the signed distance from the vehicle position p to its image 

1. If the image of p on the vertex is on the right of the vehicle (Figure 75), then 

di = y(P-x ~ Pim-x)2 + (p.y - Pim-y)2- 

98 



2. If the image of p on the vertex is on the left of the vehicle (Figure 74), then 

d\ = -\]{p-x - pim-x)2 + (p.y - Pim.y)2. 

The safety clearance function g(d\) is calculated as following: 

1. If the image of p on the vertex is on the right of the vehicle, then 

/j\_\d\—do   if d\ < d0 

I 0 otherwise 

2. If the image of p on the vertex is on the left of the vehicle, then 

/ , x _ f d-i + d0   if \di | < d0 

1   0 otherwise 

Thus the steering function in Eq. V.2 becomes 

/a = - (a(/c - Kdl) + b(6-61) + cg(d1)). 

For the second image p,TO, the varaibles Kd2, 62, and d2 in the steering function 

(Eq. V.2) have another meaning (see Figures 74, 75). 

The desired curvature Kd2 is zero. In this case, we assume that p,-m is on the 

edge p^v, where v is (p(pim). 

Kd2 = 0. 

The desired orientation 62 is evaluated as following: 

02 = «(Pirn,«)- 

The distance d^ and safety clearance function gid^) are the same as the first 

image. 

Thus for the second image, the steering function in Eq. V.2 becomes 

f2 = -(aK + b(0-62) + cg(d2)). 

99 



By combining the above two steering function values f\ and /2 using Eqs. V.7,V.8 

and V.9, we obtain the total steering function value while the robot is in vertex track- 

ing mode: 

/=-SHi+ -?-/.. 
Figure 76 hows some numerical simulation results. The following simulation 

results are obtained using different smoothness values. The effect of using distinct 

values of smoothness with a = 5,10 and 20 is clearly shown in the figure. As a 

increases, the safety cost function defined in Eq. V.5 increases. 

(7 = 10 

Figure 76.  Different trajectories corresponding to their safety Cost Function Values 
in Vertex Tracking Mode 

H.     EDGE-CONCAVE VERTEX TRACKING 

Suppose a vehicle is heading to a concave vertex (Figures 77, 78). While the 

vehicle is trying to keep itself away from the edge with a safety distance d0, it is 

following an edge of the polygon. The image of a vehicle's position always lies on 

an edge. We say that the vehicle is in Edge-Concave Vertex Tracking Mode. The 

vehicle has two distinct images piml = {xim],yiml) and pim2 = (ztm2,y.m2) such that 

the vehicle looks at pimi and pim2 as the first and second images, respectively (see 

100 



^ p , Ulli d, <2\ 

'°i |d2 
e 

e2 
i p., '     un2 

Figure 77. ccw tracking in Edge-Concave Vertex Tracking Mode 

Figures 77, 78). Because an edge is a straight line, the vehicle is supposed to track a 

directed straight line. By applying the steering function in Eq. V.2, we will evaluate 

two steering functions for the first and second images and take a value by combining 

these two function results using Eqs. V.7,V.8 and V.9. Now, we will explain how to 

formulate ^, the steering function, in Eq. V.2 for each image. 

For both images, we compute the variables /cj, 0d, and d in steering function 

(Eq. V.2) as follows. 

For the first image p,mi, 

«di = 0. 

• If the image of p on the edge is on the right of the vehicle (Figure 77), then 

T 

M) 

01  = *(p,  Piml) + -, 

d\ — do   if d\ < do 
0 otherwise 

If the image of p on the edge is on the left of the vehicle (Figure 77), then 

7T 
01  =^(P,Piml)-^, 

101 



Figure 78. cw tracking in Edge-Concave Vertex Tracking Mode 

( J \      f d,! + d0   if \dt 
9idl) = { 0 othei 

I <dQ 
otherwise 

For the second image p,m2, 

Krf2 = 0. 

• If the image of p on the edge is on the right of the vehicle (Figure 77), then 

■K 

h = *0>, /w) + 2' 

9(d2) = 
d2 — do   if d2 < do 
0 otherwise 

If the image of p on the edge is on the left of the vehicle (Figure 77), then 

7T 
02 = *(p,  Pim2) - -, 

gW = { d2 + d0   if \di\ < d0 

0 otherwise 

Thus 

/, = -(aK + b(e-e1) + cg(d1)), 

f2   =   -(aK + b(e-d2) + cg(d2)), 

102 



where /a and /2 are the steering functions of the first and second images, respectively. 

By combining fx and f2 using Eqs. V.7,V.8 and V.9, we obtain the total 

steering function value: 

/ 
U>! 

"/l + 
U>2 -h 

Uli + U>2 Uli + UJ2' 

Figure 79 shows the result of different trajectories.   If a increase, the safety cost 

function defined in Eq. V.5 increases. 

zdo- 

% 

<r = 40 

a = 20 
i*6 = 10 

a = 5 } 
 L 

Figure 79. Different trajectories corresponding to their safety Cost Function Values 
in Edge-Concave Vertex Tracking Mode 

103 



I.      SIMULATION RESULT ANALYSIS 

In this section, several numerical simulation results are demostrated. 

In Figures 80, 81 and 82, the vehicle is supposed to track a ccw polygon with 

ccw direction, where its initial configuration go = ((63,450), —7r/2,0) and the safety 

clearance do = 80. The effect of using distinct values of smoothness with a — 5,10,20, 

and 40 is clearly shown in these figures. From this simulation, we found that there is a 

close relationship between the smoothness cr and the safety cost function T. In order 

to minimize T to obtain safer motion, a smaller cr should be used, and hence, bigger 

curvature is obtained. Therefore, slower-motion execution is needed. On the other 

hand, if less safe motions are allowed, a larger cr makes the trajectories smoother, and 

hence, smaller curvatures will be used. Therefore, faster motion execution is possible. 

But, in this case, the safety cost function T will increase. Table I shows the values for 

both safety cost function T and smoothness cost function E corresponding to different 

values of cr. 

<T safety cost function value T smoothness cost function value E 
5 23.7225 0.03262 
10 33.9674 0.00181 
20 45.5073 0.00027 
40 54.1786 0.00008 

Table I. Relation between smoothness and safety cost function values for polygon 
tracking (I) 

In Figure 83, the vehicle is supposed to track a ccw polygon with cw direction, 

where its initial configuration q0 = ((63,350), 7r/2,0) and the safety clearance d0 = 80. 

The effect of using distinct values of smoothness with a = 10, and 40 is shown in this 

figure. Table II shows the values for both safety cost function T and smoothness cost 

function E corresponding to different values of cr. 

Another example is shown in Figure 84. The vehicle is supposed to track a ccw 

polygon with ccw direction, where its initial configuration q0 = ((103,450), —7r/2,0) 

and the safety clearance do = 80.  The effect of using distinct values of smoothness 

104 



er safety cost function value T smoothness cost function value E 
10 33.9674 0.00181 
40 54.1786 0.00008 

Table II. Relation between smoothness and safety cost function values for polygon 
tracking (II) 

with a = 5,10,20, and 40 is shown in this figure. Table III shows the values for both 

safety cost function T and smoothness cost function E corresponding to different 

values of a. 

a safety cost function value T smoothness cost function value E 
5 41.6822 0.00834 
10 44.3815 0.00118 
20 49.8532    . 0.00025 
40 54.7353 0.00008 

Table III. Relation between smoothness and safety cost function values for polygon 
tracking (III) 

In Figure 85, the vehicle is supposed to track a cw polygon with cw direction, 

where its initial configuration q0 = ((60,500),-7r/2,0) and the safety clearance d0 = 

80. The effect of using distinct values of smoothness with a = 10,20, and 40 is 

shown in this figure. Table IV shows the values for both safety cost function T and 

smoothness cost function E corresponding to different a. 

a safety cost function value T smoothness cost function value E 
10 22.0447 0.00275 
20 33.0122 0.00027 
40 57.2302 0.00003 

Table IV. Relation between smoothness and safety cost function values for polygon 
tracking (IV) 

The example in Figure 86 shows the result of the trajectory if the polygon is not 

rectlinear. This means that our algorithm is applicable to any polygon, the vehicle 

is supposed to track a ccw polygon with cw direction, where its initial configuration 

<7o = ((63, 350),TT/2,0) and the safety clearance d0 — 80. The effect of using distinct 

105 



values of smoothness with a = 10,20, and 40 is shown in this figure. Table V shows the 

values for both safety cost function Y and smoothness cost function E corresponding 

to different a. 

a safety cost function value T smoothness cost function value E 
10 42.7962 0.00154 
20 56.5925 0.00029 
40 64.3274 0.00008 

Table V. Relation between smoothness and safety cost function values for polygon 
tracking (V) 

The polygon tracking algorithm was also implemented on Yamabico after being 

successfully developed on a simulator (see Chapter VIII). 

106 



• \ 

\ /: 
\i : 

d0 

■\ : 

•\: 
■i: 

•i: 

\ 
\ 
i 

: v- 
■ v 

a = 5 

<r = 10 

•f 

Figure 80: Different trajectories of ccw motion corresponding to their safety cost function values 
for ccw polygon (I) 

107 



/. 
/.' 

:   t.' 
; /.' 
:/: 

'i:   q 

!'■ r 
<■'/•' 

i-'/ • 
i/ ■' 

do 

CT= 10 

a = 20 
.- / 
/ 

Figure 81: Different trajectories of ccw motion corresponding to their safety cost function values 
for ccw polygon (II) 

108 



s. / V / \ / \ 
/ \ 

/ \ 
/ •\ 

• 1 

I 

1 

1 
i • *. 
i j:       .         „ 

-p«p-      00      —*- 

ii : 

■ 1 

• 1 

•1 

■1 

ii-:   \ 
»'.       a = 40 

■1 ; 

ii-: 
»'•: 

7  ; 

\-\ / 
\: / 
v.                  a = 20 /' 
\ /' 

X/ . y' 

~*. • ** 
— — w •_: — ;_■ — _;_;■_■_; •_• ■_ — •_ ■_• •_• /_■ _; '_ ._' '— —.■".". 

Figure 82: Different trajectories of ccw motion corresponding to their safety cost function values 
for ccw polygon (III) 

109 



/.;•"' a = 40 

1 

M: 
IV 
i :\ 
i:' 
i: * 

\. 

do 

\ a = 10 / 

Figure 83: Different Trajectories of cw Motion Corresponding to their Safety Cost Function Values 
for ccw Polygon (IV) 

110 



a = 5 
v A 

\ 

«^ 

40 I 
1] 

(7=  10 
a = 20 ••/ : 

/• /   : 
/, 

Figure 84: Different trajectories of ecu; motion corresponding to their safety cost function values 
for ccw polygon (V) 

111 



q 

AW 

a = 40 

cr = 20 
\j^a = 10 

T" 

■ M 
•. v. 

•. i 

Figure 85: Different trajectories of CJD tracking corresponding to their safety cost function values 
for cw polygon (VI) 

112 



//'• 

>t: 

'/I- 
in- 

III 
in 
V 

.   NN 

V 

\ \ 
\ 
\ \ 
:\ 

.'i / 

■ / 

a = 10 
a = 20 

a = 40 

Figure 86: Different trajectories of cu; motion corresponding to their safety cost function values for 
ccw polygon (VII) 

113 



114 



VI.        SAFE LOCAL MOTION PLANNING 
WITH SMOOTHING 

This chapter addresses an approach to local motion planning. This approach 

provides the fundamental concepts to be used in local motion planning of this dis- 

sertation. The path class represented by a directed v-edges sequence (Chapter IV) 

provides information for rough robot navigation. The problem of finding the optimal 

motion in the path class is called the local motion planning. This problem is very 

important in this dissertation because self-localization is executed while the vehicle is 

moving. How do we define the optimality? In this dissertation, we take safety as the 

one property characteristic of motions to be optimized. Thus, the task of local motion 

planning is to produce the safest motion in a given path class with smooth motions 

where both safety and smoothness must be made precise. In Section A, we state 

the local motion planning problem. Sections B and C describe the safety clearance 

approach and the generalized safety cost function respectively. In Section D, The 

concept of local motion planning approach is presented. Sections E and F discuss the 

usefulness of directed v-edges sequence to local motion planning. In Section G, the 

local motion planning algorithm is described. 

A.     PROBLEM STATEMENT 

We are given a world, W; a path class represented by directed v-edges sequence 

E; an initial configuration q = (p, 6, K) of a vehicle (p, 6, and K are its position, 

orientation and curvature respectively); and a safety clearance do(> 0) (see Section B 

in Chapter V) (Figure 87). The problem of local motion planning is to plan a safe 

motion for a rigid body robot in a given path class, with smooth motions which avoids 

collisions with obstacles in the environment and satisfying the following conditions: 

1. Its path curvature is continuous, and 

2. The total safety cost of the path is minimized (see Section C). 

115 



—* 

Motion Planning 

Worid Model (W) 

Istart 
Path 

Safety Clearance   (cj,) 

Path Class (7t) 

Figure 87. Block diagram for motion planning 

B.     SAFETY CLEARANCE CONCEPT 

T 

Figure 88. Tracking with exact Voronoi boundary 

In this dissertation, we take safety as the single characteristic of motions to 

be optimized. The vehicle is supposed to move through a region lying between two 

distinct given images p\ = (#1,2/1) and p2 = (£2,2/2)? m sucn a wav that the vehicle 

looks at pi and p^ on its left and right, respectively. When the left and right images 

are on an edge of the world boundary, the vehicle tries to make the distances to 

the left and right boundaries equal; in other words, its trajectory is eventually on 

the directed bisector of the two images (Voronoi boundary). But tracking the exact 

Voronoi boundary is not an appropriate approach (see Figure 88). We can loosen 

the strict Voronoi boundary tracking requirement in order to reduce the frequency 

of lateral transitions. One method is that the vehicle keeps safety clearance from 

the left/right boundaries (see Figure 89). If the distance between the robot and its 

left/right boundaries is less than this safety clearance, the robot must try to make the 

distance to the left /right boundaries greater than this safety clearance using the safety 

116 



clearance function g(d) (see Eq. V.4). Figure 90 shows that using safety clearance d0 

and safety clearance function g(d) do not cause lateral motion of the vehicle. 

safety clearance safety clearance 

safety area 

for a robot 

Figure 89. Safety clearance 

t_J3 1  
 : 

L>- 
, 

1 dn 

^ 1 1                    1 

Figure 90. Tracking with safety clearance 

C.     GENERALIZED SAFETY COST FUNCTION 

In Chapter V Section D, we discussed the concept of the safety cost function 

if we have only one polygon. Now, we will generalize this definition. 

Consider a world W that consists of a finite number of polygons J50, Si, • • •, Bn, 

i.e., 

W =  {#o,5i, ••,£„},    n>0, 

117 



where W has one cw polygon B0 and the n ccw polygons B\, • • •, Bn are considered 

to be obstacles for the robot. A path in free space is a pair (s\,f) consisting of a 

positive real number si and a continuous function /. The length of path from the 

point p(0) to a point p(s) along a path(si,/) is equal to s if 0 < s < S]. Let j(p,Bi) 

denote the distance between a point p to a polygon £?,. Let p(s) denote a vehicle 

position at s on the path. The total safety cost of a path(si,/) is given by a positive 

cost function T : 71 —> 71 defined by 

Jo    |B.ew 
<fe, (VI.l) 

where do is the robot's safety clearance (see Eq. V.3. 

Generally, a path farther from obstacles is safer, but it tends to be longer. 

Therefore, we need to strike a balance between smoothness and safety of a path. There 

is a positive parameter, cr, in the steering function, which controls the smoothness of 

the resultant trajectory. If a smaller a is used, the trajectory becomes sharper and 

the path becomes safer, and if a larger a is used, the trajectory becomes smoother 

and the path becomes more dangerous. As the smoothness parameter a becomes 

large, the path converges to the smoothest path. Thus, we obtain a class of paths 

with different weight between safety and smoothness in an equivalent class. 

D.     PLANNING APPROACH 

The global path class is the input to local motion planning. It provides useful 

information in directing the robot to accomplish its mission. The task of local motion 

planning is to provide a smooth, collision-free motion for the robot, based on the 

global path class generated by the global path planner. Because the safety of an 

autonomous vehicle navigation is determined by the clearance between the vehicle 

and obstacles. Path safety is a function of the distance from the robot to an obstacle. 

As the distance decreases, the safety decreases. The safest path is one in which the 

distance to the obstacle is maximized. In many cases, a robot should not approach 

closer to the obstacle than a given safety range (see Figure 91). 

118 



Unsafe Path Safe Path 

Figure 91. Safe and unsafe paths 

Because a Voronoi boundary is the set of points locally maximizing the clear- 

ance from obstacles, safety is maximized on such a boundary. Unfortunately, the 

naive plan of just tracking the Voronoi boundary does not work, because: 

1. A Voronoi boundary may have discontinuity in either its tangential direction 
or its curvature. It is known that a nonholonomic rigid body robot cannot 
track such a reference path. For example, in Figure 92, there is a discontinuity 
in its curvature when there is a transition from a line segment to a parabolic 
arc. Also, there is a discontinuity in its tangential direction when there is a 
transition from a parabolic arc to another. 

2. It is time-consuming and, actually, is not necessary to compute the Voronoi 
boundary and to track it. 

3. A complex data structure is needed to represent Voronoi boundaries. 

4. This task becomes unduely complex for dynamic environments. 

However, the Voronoi boundary gives us the idea that the motion will be considered 

safer if it stays further away from objects. 

Instead of tracking the Voronoi boundary, the vehicle tries to make the dis- 

tances to the left and right boundaries using a steering function which uses data such 

as the distances, directions to left and right images, and the desired curvature. 

119 



curvature 
discontinuitj}/ 

\ 

tangential 
discontinuity curvature discontinuity 

Figure 92. Discontinuity where two distinct Voronoi boundary intersect 

The new problem to be solved in this dissertation is how to achieve a smooth 

motion when the vehicle gets closer to an intersection of two distinct segments (for 

instance from a line segment to a circle segment). In order to solve this problem, 

we will use the fact that the proximity relation changes at such an intersection (see 

Figure 93). Therefore, we will watch second images in the forward portion of a left or 

right boundary, and will make a smooth motion by evaluating the steering function 

using not only the left/right first images, but the left/right second images too. That 

is, when a second image gets closer, we evaluate two steering functions with the first 

and the second images and take a value by mixing these two function results. Thus, 

resultant motion paths will be "smoothed" using an appropriate smoothness a. The 

120 



smoothness a is parameter in the steering function, which controls the smoothness of 

the resultant trajectory. If a smaller a is used, the trajectory becomes sharper, and 

if a larger a is used, the trajectory becomes smoother. For more details, see [36]. 

Left Image 

I 

Ai~-~ 
\K 

Second Right Image 

1 

First Right Image 

Figure 93. Both left and right images are on edges 

As a summary of the above, the safe motion planning is done by the general 

algorithm stated above. We will confirm the validity of the method of using the left 

and right images for tracking the smoothed path. Also, we need to find a robust 

algorithm for making smooth motion from one boundary segment to another. A 

striking advantage of this method is that is effective in more dynamic environments. 

This method may be useful even in unknown worlds as well, because the images can 

be taken by sensors instead of information extraction from the model. 

E.     THE USEFULNESS OF DIRECTED V-EDGES SE- 
QUENCE TO LOCAL MOTION PLANNING 

This section describes how the directed v-edges sequence E is useful for local 

motion planning. Once the global plan represented by directed v-edges sequence is 

found, it is passed to a routine which ensures the vehicle will follow the global plan 

in order to reach the goal. Beacuse the directed v-edge £ is defined by the two closest 

polygons, these polygons are used for the selection of the features which are used to 

121 



LüÄiBfl 

IBo/B,] 

•B-K [B./Bj 

Figure 94. Directed v-edges sequence to local motion planning (left turn is required) 

calculate the desired control values. For example, in Figure 94, the directed v-edges 

sequence E is defined as 

= [B^/Bom/B^Bi/BsttBo/Bs] (VI.2) 

In Eq. VI.2, the first directed v-edge is £1 = [Bi/B0]. This mean that, the vehicle 

recognizes B\ and B0 as the left and right obstacles respectively. Although the start 

orientation of the vehicle is different from the direction of the motion as shown in 

Figure 94, the vehicle steers in the direction of motion since B\ is the left obstacle. 

In the second directed v-edge, £2 = [B1/BA], the vehcile recognizes B4 as the right 

obstacle. Then the vehicle will make left turn. 

On the other hand, does the following directed v-edges sequence H produce 

another motion? 

E = [Bt/BoWBoftBa/Bo] (VI.3) 

In the second directed v-edge, £2 = [B4/B0], the vehicle recognizes B4 as the left 

obstacle (see Figure 95). Then no turn is required. 

122 



Wi 

fB3^ 

m 

Figure 95. Directed v-edges sequence to local motion planning (no turn is required) 

From the above, we can conclude that a directed v-edges sequence is useful for 

both local motion planning and global path planning. 

F.     DIFFERENT TYPES OF POLYGON TRACKING IN 
DIRECTED V-EDGES SEQUENCE 

The essential idea is based on the fact that obstacles present in the working 

environment and when a vehicle is moving, it recognizes the left and right images on 

these obstacles. Therefore, it is possible for a vehicle to travel in the free space along 

obstacles's outer boundary and to keep certain safety clearance. 

When a vehicle is moving, it recognizes not only the left/right images, but 

also left/right second images. Therefore, we will watch second images in the forward 

portion of a left or right boundary, and we will evaluate the steering function using 

not only the left/right first images, but the left/right second images too. Because 

path class is defined by a directed v-edges sequence H and each directed v-edge £ is 

defined by the two closest polygons (subpolygons), these polygons are used for the 

123 



selection of the features which are used to calculate the steering function values. We 

have the following types of tracking: 

• The left and right polygons (subpolygons) in current and next directed v-edge 
are not identical (see Figures 96). 

• The left polygons (subpolygons) in current and next directed v-edge are iden- 
tical, but the right polygons (subpolygons) in current and next directed v-edge 
are not identical (see Figures 97, 98, 99, 100). 

• The left polygons (subpolygons) in current and next directed v-edge are not 
identical, but the right polygons (subpolygons) in current and next directed 
v-edge are identical (see Figures 101, 102, 103, 104). 

First Left Image       |   , 

First Right Image 

B, 

X 

"*Ofcfh 

Second Left Image 

Second Right Image 

Figure 96.   Left and right current and next polygons are not identical in directed 
v-edges sequence E 

124 



Second Left Image 

First Left Image 

First Right Image 

B. 

Second Right Image 

B" 

Figure 97.   Left current and next left polygons are identical but right current and 
next right polygons are not identical in directed v-edges sequence E (I) 

Second Left Image 

First Left Image 

First Right Image. 
d>- 

XI 

\ 
Second Right Image 

Figure 98.   Left current and next left polygons are identical but right current and 
next right polygons are not identical in directed v-edges sequence E (II) 

125 



Second Right Image >-       i First Right Image 

<3J 
Second Left Image i 

j First Left Image 

1/ 

Figure 99.   Left current and next left polygons are identical but right current and 
next right polygons are not identical in directed v-edges sequence 3 (III) 

Second Right Image 

Second Left Image 

First Left Image 
First Right Image  ':":»:»^^^^ 

Figure 100.   Left current and next left polygons are identical but right current and 
next right polygons are not identical in directed v-edges sequence H (IV) 

126 



Second Right Image 

Second Left Image 

B„ 

First Right Image 

First Left Image 

fi. 

Figure 101.   Left current and next left polygons are not identical but right current 
and next right polygons are identical in directed v-edges sequence E (I) 

Second Right Image 

Second Left Image 
\ 

TÜ> 
First Right Image 

i        First Left Image 

V 

B, 

Figure 102.   Left current and next left polygons are not identical but right current 
and next right polygons are identical in directed v-edges sequence E (II) 

127 



First Left Image 

First Right Image 

i \ 
Second Left Image 

Cr>' 
. Second Right Image 

i 

Figure 103.   Left current and next left polygons are not identical but right current 
and next right polygons are identical in directed v-edges sequence EH (III) 

First Left Image 

First Right Image 

V\ 
Second Right Imagf 

Second Left Image 

Figure 104.   Left current and next left polygons are not identical but right current 
and next right polygons are identical in directed v-edges sequence E (IV) 

128 



G.     LOCAL MOTION PLANNING ALGORITHM 

The previous section analyzed the different types of polygon tracking possible 

in a directed v-edges sequence. We summarize that analysis into motion rules based 

on the type of polygon tracking (see Chapter V). The rule selection is based on the 

current and next directed v-edge in the directed v-edges sequence E. 

1. If both the current and next left polygons in the directed v-edges sequence E 
are ccw and they are identical and both the current and next right polygons 
in E are cw (ccw) and they are not identical, then a left turn is required. In 
this case, both the current and next left images are identical and the direction 
of tracking left polygon is ccw but the current and next right images are not 
identical and the direction of tracking both right polygons is cw. For example, 
in Figure 105, the sequence E is given as 

E=[B2/B0][B2/B1], 

and in Figure 106, E is given as 

E = [Bl/B3}[B1/B2). 

2. If both the current and next left polygons in the directed v-edges sequence E 
are cw (ccw) and they are not identical and both the current and next right 
polygons in E are ccw and they are identical, then a right turn is required. 
In this case, both the current and next left images are not identical and the 
direction of tracking both left polygons is ccw but the current and next right 
images are identical and the direction of tracking right polygon is cw. For 
example, in Figure 107, the sequence E is given as 

E=[B1/B2][B0/B2], 

and in Figure 108, E is given as 

E=[B3/B2][B1/B2\. 

3. If both the current and next left polygons in the directed v-edges sequence E 
are cw and they are not identical and both the current and next right polygons 
in E are ccw (cw) and they are identical, then no turn is required and we follow 
the right side of the corridor. In this case, both the current and next left images 
are not identical and the direction of tracking both left polygons is ccw but 
the current and next right images are identical and the direction of tracking 
right polygon is cw. For example, in Figure 109, the sequence E is given as 

E=[B1/B3][B2/B3\, 

129 



and in Figure 110, E is given as 

E - [B3/Bo][B2/B0]. 

4. If both the current and next left polygons in the directed v-edges sequence 
E are ccw (cw) and they are identical and both the current and next right 
polygons in E are ccw and they are not identical, then no turn is required 
and we follow the left side of the corridor. In this case, both the current and 
next left images are identical and the direction of tracking left polygon is ccw 
but the current and next right images are not identical and the direction of 
tracking both right polygons is cw. For example, in Figure 111, the sequence 
E is given as 

E=[B3/B2][B3/Bl], 

and in Figure 112, E is given as 

E=[Bo/B2][Bo/B3}. 

5. If both the current and next left polygons in the directed v-edges sequence 
E are ccw and they are not identical and both the current and next right 
polygons in E are ccw and they are not identical, then no turn is required and 
we follow the left (right) side of the corridor. In this case, both the current 
and next left images are not identical and the direction of tracking both left 
polygons is ccw but the current and next right images are not identical and the 
direction of tracking both right polygons is cw. For example, in Figure 113, 
the sequence E is given as 

E=[B,/B3][B2/B4]. 

130 



Second Left Image 

\ 

First Left Image 

First Right Image- Lt>- 

SIB, 

Second Right Image 

Figure 105. Left turn is required (I) 

Second Left Image 

B, 

First Left Image 

First Right Image, 
& 

--«*; 
\ 

Second Right Image 

Figure 106. Left turn is required (II) 

131 



Second Right Image 

Br 

Second Left Image 

B, 

V 
^ First Right Image 

First Left Image 

ÜB1 

Figure 107. Right turn is required (I) 

Second Right Image 

B, 

Second Left Image 
\ 

^ 

First Right Image 

y 
First Left Image 

Figure 108. Right turn is required (II) 

132 



Bl B2 

.eft Image First Left Image 

First Right Imag 

 "^>i  

d>" ■ 
;           [            Secon 

.---"^ econdl 

i Right Image 

B3 

Figure 109. No turn is required (I) 

First Left Image 

First Right Image 

Second Right Imag|| 

Second Left Image 

ill 

Figure 110. No turn is required (II) 

133 



/ 
Second Right Image 

T»v 

"<$ 

First Right Image 

Second Left Image i 
i First Left Image 

iX 

Figure 111. No turn is required (III) 

Second Right Image 

Second Left Image 

First Left Image 

»•* - 

First Right Image 

Figure 112. No turn is required (IV) 

134 



First Left Image 

First Right Image 

Second Left Image 

Second Right Image 

J_ "■*** 

Figure 113. No turn is required (V) 

H.     SIMULATION RESULT ANALYSIS 

In this section, several numerical simulation results are shown. 

Consider the problem of finding a path from a start configuration, S, to a goal 

configuration, G in a polygonal world W (Figure 114). It is desired to connect the 

start configuration, S, to the goal configuration, G, using a continuous, smooth path. 

There are four different path classes. Each path class is symbolically represented by 

directed v-edges sequence. 

7T, = [B4/Bo] [B4/B5] [B2/B5] [B3/B5] 

TT2 = [B4/BQ] [Bs/Bo] [B5/B3] [B5/B2] 

7T3 = [B0/B4] [Bx/B4) [B2/B4] [B2/B5] 

7T4 = [B0/B4] [Ba/Ä,] [B2/B4] [B5/B4] [B5/B0] [B5/B3][B5/B2] 

In Figure 115, the initial configuration of the vehicle is «70 = ((90,450), — x/2,0) 

and safety clearance is d0 = 80. The path class representing by the directed v-edges 

sequence is given as 

7TJ = [B4/B0] [B4/Bs] [B2/B5] [B3x/B5] 

Table VI shows the values for both safety cost function T and smoothness cost function 

E corresponding to different a. The effect of using distinct values of smoothness with 

135 



Figure 114. World of motion planning 

a = 5,10,20, and 40 is clearly seen. From this simulation, we found that there is a 

close relationship between the smoothness a and the safety cost function I\ In order 

to minimize F to obtain safer motion, a smaller a should be used, and hence, bigger 

curvature is obtained. Therefore, slower-motion execution is needed. On the other 

hand, if less safe motions are allowed, a larger a makes the trajectories smoother, and 

hence, smaller curvatures will be used. Therefore, faster motion execution is possible. 

But, in this case, the safety cost function T will increase. 

er safety cost function value T smoothness cost function value S 
5 37.7319 0.08189 
10 48.1742 0.00511 
20 58.7558 0.00049 
40 67.5781 0.00007 

Table VI. Relation between smoothness and safety cost function values for motion 
planning (I) 

136 



In Figure 116, the initial configuration of the vehicle is q0 = ((90,450), —7r/2,0) 

and the safety clearance is do = 80. The path class representing by the directed 

v-edges sequence is given as 

7T2 = [B4/BQ] [B5/B0] [B5/B3] [B5/B2] 

Table VII shows the values for both safety cost function T and smoothness cost 

function E corresponding to different a. 

a safety cost function value T smoothness cost function value E 
5 55.0527 0.45522 
10 57.6073 0.00207 
20 60.8893 0.00022 
40 66.3729 0.00003 

Table VII. Relation between smoothness and safety cost function values for motion 
planning (II) 

In Figure 117, the initial configuration of the vehicle is q0 = ((90,350),7r/2,0) 

and the safety clearance is do = 80. The path class representing by the directed 

v-edges sequence is given as 

7T3 = [B0/B4] [£,/&,] [B2/B4] [B2/B5] 

Table VIII shows the values for both safety cost function T and smoothness cost 

function E corresponding to different a. 

a safety cost function value T smoothness cost function value E 
5 33.0391 0.06152 
10 37.4319 0.00313 
20 45.1034 0.00027 
40 53.0906 0.00003 

Table VIII. Relation between smoothness and safety cost function values for motion 
planning (III) 

In Figure 118, the initial configuration of the vehicle is q0 = ((90,350),7r/2,0) 

and the safety clearance is d0 — 80.   The path class representing by the directed 

137 



v-edges sequence is given as 

7T4 = [Bo/B4] [B,/B4] [B2/B4] [Bs/B4] [B6/B0] [B5/B3][B5/B2] 

Table IX shows the values for both safety cost function T and smoothness cost function 

£ corresponding to different a. 

a safety cost function value T smoothness cost function value £ 

5 61.9985 0.11397 
10 68.9123 0.00733 
20 78.6803 0.00083 
40 89.3738 0.00013 

Table IX. Relation between smoothness and safety cost function values for motion 

planning (IV) 

Another example is shown in Figure 119. The vehicle is supposed to track the 

following path class where its initial configuration qo = ((90,450), —7r/2,0) and the 

safety clearance do = 80. 

7T = [B4/Bo] [B4/B5] [B4/B2] [B4/Bi] {B4/B0} [B4/B5] [B4/B2] [BA/B{\ 

The effect of using distinct values of smoothness with <r = 5,10,20, and 40 is shown 

in Table X. 

a safety cost function value T smoothness cost function value S 

5 48.9584 0.18851 
10 69.2488 0.01303 
20 74.3775 0.00126 
40 77.5919 0.00018 

Table X. Relation between smoothness and safety cost function values for motion 
planning (V) 

The example in Figure 120 shows the result when a vehicle is browsing ran- 

domly in the free space. The vehicle tracks the following path class where its initial 

configuration q0 = ((90,120),7r/2,0) and the safety clearance d0 = 80. 

x   =   [Bo/Bs] [B4/B5] [B4/B2] [B4/B1] [B4/B0] [B5/B0] [B5/B3] 

[B5/B2] [B4/B2] [Bt/Bi] [B4/Bo] [B5/B0] [B5/B3] 

138 



The effect of using distinct values of smoothness with a = 5,10,20, and 40 is shown 

in Table XI. 

a safety cost function value T smoothness cost function value £ 
5 63.0592 0.18534 
10 72.8446 0.01213 
20 84.4241 0.00061 
40 91.6753 0.00015 

Table XI. Relation between smoothness and safety cost function values for motion 
planning (VI) 

The local motion planning algorithm was also implemented on Yamabico after 

being successfully developed on a simulator (see Chapter VIII). 

139 



Bi 

B4 

B, 
a = 40 CT = 20 

*==£■. 

.-.■.■.-.■.■ .B5 ■■■■■■■■■■■■■■■ .■ 

B2 

Bi 

Figure 115: Motion planning and execution result (I) 

140 



Bi 

Bö 

q 
a 

B4 

'/ 

a = 40 

V 
a = 20 

Bi 

B2 

B3 

Figure 116: Motion planning and execution result (II) 

141 



■B, 

a = 20 

B4 

B, B2 

■Bi 

B3 

Figure 117: Motion planning and execution result (III) 

142 



■Bi 

Bö 

BA 

B2 

B3 

Figure 118: Motion planning and execution result (IV) 

143 



Si 

B, 

B4 

\ 
\ 
1 

/l 
// 
l 

B2 

B5 

B3 

Figure 119: Motion planning and execution result (V) 

144 



Bi 

5n ,/ 

a = 20 

' ■ 

B4 

B2 

* q 

Bs 

£3 

Figure 120: Motion planning and execution result (VI) 

145 



146 



VII.        SELF LOCALIZATION USING 
MODEL-SONAR FEATURE 

CORRESPONDENCE 

A.     INTRODUCTION 

A mobile robot can be assisted in its navigation tasks by providing it with a 

priori knowledge about the environment in which it will navigate, usually called a 

world model or a map. One of the issues to be addressed in using a stored model as 

an aid in mobile robot navigation is that of estimating the position and orientation of 

the robot with respect to the model. Once the robot accurately estimates its location 

within the model, other navigation tasks can be performed. Most mobile robots are 

equipped with wheel encoders that can estimate the robot's relative position at every 

instant. A key capability of an autonomous mobile robot operating in an indoor 

environment is localization, i.e. determination of its current position and orientation. 

The usual method for position estimation of a wheeled autonomous mobile robot 

is odometry or dead reckoning. However, due to wheel slippage and quantization 

effects, these estimates of the robot's position contain errors. These errors accrue 

and can grow limitlessly as the robot moves, causing the position estimate to become 

increasingly uncertain. So, most mobile robots use additional forms of sensing, such 

as sonar to aid the position estimation process. 

In order to effectively use the stored world model of the environment and the 

sensor data, it is necessary to establish correspondence between the sensory obseva- 

tions and the model information. To deal with this problem, the robot should observe 

its surroundings and recognize landmarks with its external sensors. 

We assume that the vehicle 

1. has a geometric model of the static portions of an indoor world, 

2. possesses the dead-reckoning capability, 

3. executes model-based navigation through these two capabilities, and 

147 



4. has sonic sensors. 

This chapter introduces an algorithm for self localization. The method used 

here is based on the two dimensional transformation and least squares linear fitting 

algorithm [36, 40]. The theory of two dimensional transformation groups [4, 24, 39] 

is a powerful tool to deal with the positional error evaluation. It is used to calcu- 

late the robot's position and motion in a two dimensional region. Feature extraction 

from sensory data is a basis for model—based navigation of mobile robots. This com- 

putationally efficient method allows to correct localization error in real-time. Two 

dimensional transformation and least square fitting are not a new concept, but using 

them makes self localization more amenable to human understanding. 

B. GOAL AND FEATURES OF SELF LOCALIZATION 
METHOD 

y 
V 

y 
i 

 Y 
o *v 

Figure 121. Positioning of rigid body robot as configuration 

A rigid-body robot has three degrees of freedom in its positioning: its posi- 

tion pv (corresponding to xv and yv) and heading 8V (we call the position-heading 

pair configuration) (Figure 121). A useful vehicle must have dead reckoning ability 

to maintain the current vehicle configuration using its wheels' incremental motions. 

148 



However, errors in the configuration obtained by dead-reckoning accumulate over 

time. It is known that the uncertainty in the position pv is represented by an ellipse. 

Our goal is 

1. to find a robust algorithm for the vehicle to continually eliminate its positional 
uncertainty so that the uncertainty ellipse and the directional uncertainty will 
be reset to a point using the geometrical model of the world and sonars in real 
time, and 

2. to implement this algorithm using the autonomous self-contained mobile ve- 
hicle Yamabico-11 for testing and evaluation. 

The proposed algorithm and the implementation method have the following 

features: 

1. They use a two-dimensional abstract geometric model of the indoor environ- 
ment. 

2. They use ultrasonic sensors and least squares fitting algorithm to sense the 
transformations of immobile known edges in the environment. 

3. They match a sensed edge transformation landmark against the corresponding 
edge transformation in the model. 

4. Odometry correction is done whenever a side-locking sonar scans a known 
object at an angle nearly normal to its surface. Since this event takes place 
relatively frequently in a normal indoor environment, the vehicle's location 
error does not increase indefinitely. Thus, the vehicle's safe motion and correct 
sensor data interpretation are guaranteed. 

5. In the implementation of this algorithm on Yamabico-11, the localization cor- 
rection task is superimposed in real-time on the current vehicle's main mission. 
No extra motion or extra time is needed. 

6. This algorithm for odometry correction is vehicle-independent. 

Through this method, the robot can minimize its positional uncertainty, can 

make safe and reliable motions, and can perform useful tasks in a partially-known 

world. Thus, self-localization is actually an essential component of model-based nav- 

igation for indoor applications. 

149 



C.     TWO DIMENSIONAL TRANSFORMATION 

In the field of robot manipulators, three-dimensional homogeneous transfor- 

mation algebra has widely been used in analysis and design [58, 53]. Likewise, we 

need a framework for analyzing motions of two-dimensional rigid bodies. One obvi- 

ous method is the two-dimensional version of the homogeneous transformations. This 

approach has, however, one drawback: the orientation of a rigid body is not explicitly 

represented. Since placement in a place is simpler than that in a space, there might 

exist a simpler and more efficient algebra for this purpose. 

Two dimensional transformation groups [36] have the same advantage as three- 

dimensional homogeneous transformations, i.e., translation and rotation are described 

in a single mathematical structure. The major differences between two-dimensional 

transformation groups and three-dimensional homogeneous transformations include 

1. The vehicle orientation is explicity represented and a transformation in this 
system keeps the full orientation information beyond the range of [—7r,7r]. 

2. The composition function and inverse function are the only two functions 
needed to solve all problems related to two-dimensional discrete motion anal- 
ysis problems. 

3. It does not have a point of singularity, one of the drawbacks of the homo- 
geneous transformations. As a result, the inverse function is defined for any 
transformation. 

The analysis of localization errors described in Section D would not be possible 

without this theory. 

1.      Definitions 
Let 7Z denote the set of all real numbers. 

Definition: A transformation, q, is defined by 

/      \ x 

9 = 

\'/ 

150 



where x,y,Ö £ 71. 

The set of all transformations is denoted by T. For example, (3, l,7r/3)T € 

T. Obviously, a transformation q is interpreted as a two dimensional coordinate 

transformation from the global Cartesian coordinate system TQ to another coordinate 

system T. 

Definition: The transformation group (T, o) consists of the set T of transformations, 

where 

T={(x,y,6)T\x,y,0£'R.} 

and the binary operator (composition function), o, is defined as follows: 

Let qx = (xi,yi,0i)T, q2 = {x2,y2,02)
T 6 (T,o), then 

9i 092 

£1 + x2 cos #i — y2 sin 0i 

t/i + x2 sin 0i + y2 cos 0! 

01+02 

The interpretation of q\ o <j2 in the domain of two-dimensional coordinate transfor- 

mations is the composition of the coordinate transformations qi and «72- 

Definition: The inverse q 1 of a given transformation q = (x, y,0)T is defined as: 

—xcos0 — i/sin0 

<Ta = a: sin 0 — j/ cos 0 

-0 

For more details, see [4, 24, 36] 

151 



D.     LINEAR FEATURE EXTRACTION 

1.       Calculation of Global Sonar Return 

We consider an autonomous mobile vehicle on which a reference transformation 

is defined. The reference transformation is a point with orientation attached on 

vehicle's body. The current transformation, 

/       \ 
xc 

Vc 

describes the robot's current position and orientation in the global frame in 

terms of the reference transformation. This transformation qc also defines the local 

robot coordinate system. Furthermore, we assume a sensor is mounted on the vehicle 

and its local positioning is described in the local vehicle coordinate system. For 

instance, if a sensor is mounted at the reference transformation, its transformation is 

(0, 0, 0,). The transformation, 

/        \ 

9*o -      VsO 

,    OsO    I 

describes the sensor's position and orientation in the local coordinate system. This 

sensor's transformation qs in the global coordinate system is the composite transfor- 

mation of qc and qa0, i.e., 

qs = qcoqso- (VII. 1) 

Therefore, if the robot moves, the current transformation qc changes, and hence, so 

does the sensor's transformation qs by Eq. VII. 1. If the combination of the robot's 

transformation qc and the local transformation qao of the sensor is appropriate, the ray 

scans objects in the vehicle's environment to give a set of points of Eq. VII. 1. Thus a 

simple range sensor can obtain an envelope of objects in the robot's environment. This 

operation is called scanning. A scan is not attainable without sensor (vehicle) motions. 

152 



For example, let the robot's configuration in the global coordinate system be qc = 

(80,40,7r/4)T, and the sonar's configuration on the vehicle be q30 = (0, —20.5, —7r/2)T. 

The sonar's configuration in the global coordinate (Figure 122), qs, is: 

/80N 

40 o 

(   o   N 

-20.5 = 

(  94.5  N 

25.5 

sonar(xs, ys) 

sonar return = 30 

Figure 122. Sonar configuration in global coordinate 

There might be an argument that if there are multiple sensors on a robot, 

multiple range data can be obtained at one time which could also describe the envelope 

of obstacles. Although this is theoretically correct, the quality of data is not as good 

as that of data through a single sensor, because it is practically impossible to adjust 

multiple sensors to have the same sensitivity in amplitude and orientation. One of 

the most important elements in this method is in that the same sensor is used for a 

sequence of positional data. This data set is used for the least squares fit algorithm 

given in subsection 2. 

153 



Although a scan is used in combination with various types of motions, two 

types of scanning, translational scanning and rotational scanning, are most common. 

Translational scanning is a mode of scanning in which the vehicle makes forward 

motion using a side range finder to scan lateral objects. In rotational scanning, the 

vehicle rotates about its center using a sensor to scan objects radially. 

2.      Generalized Least Squares Linear Fitting 

In addition to simple range and point position data, we desire more abstract 

features of objects, especially linear features, from a set of positional data [22, 40]. 

This is accomplished in reverse fashion, i.e. we presume the data we are receiving 

belongs to such a set and continuously modify a descriptive line segment to a best 

fit of the data using a least squares fitting algorithm. This line segment continues to 

grow until the incoming data or certain measures of the line segment indicate that 

the line segment should be ended and a new one started. 

vehicle 
global sonar returns 
that fall in this strip 
are added to line 
segment 

< 

sonar 
beam line segment built by 

linear fitting 

global sonar 
returns 

projected line segment • 

Figure 123. Least square linear fitting procedure 

We want to extract a linear feature from a set of points obtained by a scan. We 

will use a least-squares linear fitting method. In "APPENDIX. LEAST SQUARES 

LINEAR FITTING", we review some definitions about the least squares fit method 

[28]. Linear fitting of global sonar data for a given sonar is performed in order to 

extract line segments representing the sonar reflecting surface in robot's world space. 

154 



The linear fitting algorithm examines each individual global sonar return (this data 

set is obtained by Eq. VII. 1), and determines if it can be fitted to the current line 

segment. When ten or more points fall onto a straight line (with a user's selected 

tolerance), the linear fitting algorithm builds a line segment for a particular sonar. 

Linear fitting continues as long as sonar returns fall onto the line segment under 

construction. Linear fitting is terminated when one global sonar return fails to fall 

onto the projected line segment being constructed (Figure 123). 

E.     PRINCIPLES OF REDUCING UNCERTAINTY 

The operational conditions in this context are 

1. the vehicle knows its estimated configuration through dead reckoning, 

2. the vehicle knows the geometrical relation of the world and the proximity 
information related, 

3. the vehicle knows the local configuration of every sonar, and hence, knows, 
knows its global configuration, and 

4. we have actual data from sensors, whose characteristics are known. 

Therefore, if the vehicle's dead-reckoning is correct, we can consistently inter- 

pret the sensor data. However, if there is any error in the vehicle dead-reckoning, 

some inconsistency in the sensor data interpretation will be recognized. By compar- 

ing the information pieces (2), (3), and (4), we will be able to evaluate the error of 

dead-reckoning and can reduce the uncertainty. This is the basic principle of self- 

localization. 

Typically, we consider three situations where the positional uncertainty can 

be reduced. 

1. A sonar obtains a range value against a wall at an approximately right angle 
or against a concave corner. In this case, we have "one degree of constrants," 
and the vehicle's x coordinate, y coordinate, or a linear combination of both 
can be corrected. By this process, the uncertainty ellipse of positions becomes 
a line segment. We generally cannot reduce uncertainty in the vehicle heading 
by this information. 

155 



2. If the robot moves along a wall, its side sonar scans the wall at a right angle. 
In this case, by applying a linear fitting algorithm (see Figure 123), the robot 
obtains a line segment, which contains "two degrees of constraints." Therefore, 
the vehicle's x and 0, for instance, can be corrected. Through this operation, 
the uncertainty ellipse becomes a line segment and the uncertainty in the 
vehicle heading becomes one point. 

3. If the wall ends in the previous situation, we obtain a line segment with an 
endpoint (see Figure 123). That information contains the full "three degrees 
of constraints," and we can make a correction of the whole vehicle configura- 
tion. Through this operation, the uncertainty ellipse becomes a point and the 
uncertainty in the vehicle heading becomes one point. 

It is crucial in this method that these operations (1), (2), or (3) are frequently 

executed so that the dead-reckoning error is always kept small and the robot never 

misses correct matching between a feature obtained by a sonar and one in the geo- 

metric model. Also, in order to make this self-localization possible, the linear fitting 

process must be done on the robot's on-board software system in real-time. 

F.      SELF LOCALIZATION ALGORITHM 

q    : global 

O 

Figure 124. Robot's localization error (I) 

Using a two dimensional transformation and linear fitting method, we are now 

in a position to formulate an algorithm for estimating the position of a robot vehicle. 

156 



Let qv be the vehicle's actual (true) configuration and qt its estimated config- 

uration by localization. If there is no localization error, qt = qv. Otherwise, there is a 

difference between where the vehicle "thinks" it is (qt) and where the vehicle "really" 

is (qv) (Figure 124). In order to deal with the relation between the two configurations, 

We propose to define an error configuration e such that 

e o qv = q( (VII.2) 

i.e., this robot believed its world is e, which is different from the real (global) co- 

ordinate system. If qv and qt are determined, then the error configuration can be 

calculated by 

e = 9t°?u
1- 

For example, if qv = (100,0,0)T and qc = (101,0,0)T, then 

e = 9e o qv 
1 = 

' 100 ^ f101l 
1 

i-x\ 
0 0 0 = 0 

V ° J i ° J I °) 
Note that, qt = (1,0,0)T is correct if it is interpreted as a local configuration in e. 

object A 

O 

G'WiHi'!*!'!'****'* object B 

sensing 

♦ / objet o 
Figure 125. Object configurations 

157 



object A 

>*f!$V 8 

o 

Figure 126. Robot's localization error (II) 

The positioning of not only a vehicle but also that of any object in the envi- 

ronment may be described by a configuration. Associated with each object is its local 

coordinate system; its configuration in this world is described using this local frame 

of reference (Figure 125). We assume there is an object B\ whose actual configu- 

ration is g (Figure 126). Assume that a sensor, mounted on the vehicle, senses the 

configuration on an object in the environment. The sensor's capability is assumed to 

be ideal. That is, the vehicle is able to sense the relative configuration of an object 

with respect to its own local configuration qc with an infinite precision. Let gc be 

the configuration sensed by the vehicle. Therefore, g( may be superimposed with the 

error contained in the localization vehicle configuration qt. Therefore, the relation 

between g and gt is 

eo<7 = </e. (VII.3) 

Since the error configurations e in Eqs. VII.2 and   VII.3, are the same, we can find 

the actual vehicle's configuration qv by 

q   =    e~   oqt 

=    (9c o g'1)'1 o qc 

=   9° 971 ° ?< (VII.4) 

158 



assuming q(, g and g( are known (g is given as the knowledge of the world for the 

robot). 

Eq. VII.4 gives a formal way to evaluate the actual configuration qv of the vehicle 

using a model and sensors, where 

1. ^v is the vehicle's actual configuration, which is unknown, 

2. g is the actual configuration of an object in the environment, which is obtained 
from an environment model, 

3. qt is the localization configuration, which is known but contains an error e, 
and 

4. gt is the observed configuration of the object, which is also known and may 
have some error because this observation is made by the ideal sensor on board, 
using localization configuration qc as a point of reference. 

Next Subsections 1 and 2 show how to evaluate the actual configuration of an object 

g and the observed configuration of the object gt. 

For example, if qc = (1, l,7r/2)T,^ = (1,2,TT/2)
T

, and g = (2,4,0)T, then 

9t°9 
-l (l) M 

-1 u\ 
2 0 4 = 0 
7T 

V   2   I l°J ■K 

\   2   / 

and 

-l {5) 
-1 

( i \ (A 
0 0 1 = 4 

W2J K*l2) [°) 
qv   =   e     o qt = 

To validate the self-localization algorithm, we implemented the algorithm on 

the autonomous mobile vehicle Yamabico-11 (see Chapter VIII). 

1.      Position Information of Natural Landmarks 

When we project a three dimensional world onto a two dimensional plane, 

a vertical plane is projected to a straight edge. There are numerous edges in an 

environment as a part of a wall or a part of furniture. We consider some of those 

edges as landmarks for navigational purposes. 

159 



Let e be an edge with endpoints pi and />2- We can define a configuration 

ge = (p\,9e) with it. The orientation 9e is equal to the orientation from p\ to p2- 

Thus we can obtain the actual configuration g = ge in Eq. VII.4 for an edge e. 

2. Position   Estimation   of  Natural   Landmarks   by 
Sonar and Odometry 

sonar(x , y ) 

sonar return = 30 

(x,.y,)= (136.6,-17) 

Ol 80 

Figure 127. Global position of sonar return 

Obtaining the configuration gc for the edge e using a sonar is accomplished as 

follows. We propose translational scanning including the general least square linear 

fitting algorithm for obtaining the observed configuration gc for the edge e using a 

sonar (see Subsection 2 of Section D). 

First, during a vehicle's translational motion, assume a sonar obtains a range 

value d by a sonar whose instantaneous configuration is ga0 = (xs,ys,0s)T (see Fig- 

ure 122). The sonar's configuration in the global coordinate, Eq. VII.1, is a composi- 

tion of the vehicle odometry configuration qe and the sonar local configuration qso in 

robot-local coordinates. In this context, the sonar configuration includes odometry 

error. An estimate of the position of a point p on an object that generated a sonar 

160 



return in the global coordinate system is 

p = (xs + dcos0s,ys + dsin6s) 

For example, if the sonar return is 30 cm and the sonar's configuration in the global 

coordinate is qs = (94.5,25.5, —7r/4)T, the global position (xg, yg) of sonar return (see 

Figure 127) is given by 

xg = 94.5 + 30 * COS(-TT/4) = 136.8 

yg = 25.5 + 30 * sin(-7r/4) = -17 

By knowing where each sonar is on the vehicle (see Table XVI in Chapter IX) and 

knowing the vehicle's position, we can consistently determine the object's location 

relative to the robot's world. 

The second step is to calculate the moments up to the second order at each 

new incoming value. With these moments, the equation of the line L = (r, a) (where 

a and r are the orientation and length of a normal against L from the origin (0,0)) 

with the least squares fit and the best estimates of the endpoints of L can be obtained 

(See "APPENDIX. LEAST SQUARES LINEAR FITTING"). 

The final important step is to determine if the new incoming point should be 

included in the group of points representing a line. 

When one session of the linear fitting process ends, this process returns a pair 

of endpoints (pi,P2) as a result. Obtaining the observed object configuration gt is 

done in the same manner as described in previous Subsection 2. 

3.      Odometry Correction 

Assume a situation in which the vehicle knows its actual configuration qv and 

the vehicle is moving. When the landmarks are located in the environment and the 

robot can detect a landmark, the observed segment configuration gt is obtained. If 

there is a difference between the observed segment configuration ge and the actual 

landmark edge configuration g (see Figure 128), the robot can correct its estimated 

161 



Figure 128. Matching algorithm 

position before the error accumilates to be large. For example, in Figure 129, the 

vehicle believes it is at qc, which is on the specified directed path 7r. Actually, though, 

the vehicle is at qv and was going to move on a wrong trajectory. Odometry correction 

is made by simply substituting the odometry configuration with qv. This causes the 

odometry configuration to be the true one, and therefore, lets the control algorithm 

recognizes the non zero distance between the vehicle's configuration and the directed 

path 7T. This control algorithm then pulls the vehicle back on track (Figure 129) [38]. 

q  actual vehicle configuration 

q localization vehicle configuration 

Figure 129. Real-time localization correction 

162 



VIII.        IMPLEMENTATION OF LOCAL 
MOTION PLANNING AND SELF 
LOCALIZATION ALGORITHMS 

This chapter describes how to implement the local motion planning algorithm. 

The chapter will cover each of these in the following sequence. First, the data struc- 

tures used to represent the world are presented. Second, The experimental results 

conducted by Yamabico-11 using the MML-11 software system of polygon tracking 

and local motion planning algorithms will be presented. Third, experimental results 

of application of self-localization algorithm on an autonomous mobile robot system 

Yamabico-11 using sonars and natural landmarks will be discussed. 

A.     GEOMETRIC MODEL OF A ROBOT'S WORLD 

This section describes the data structures used to represent the world and the 

path classes. We propose to represent the robot's world by specifying the vertices 

of the polygonal holes. Each hole, then, becomes an ordered list of vertices such 

that traversing the list corresponds to traversing the hole's boundary with the free 

space on the right. In other words, vertices of CCIü holes (polygons) are ordered 

counter-clockwise, while vertices of cw holes are ordered clockwise. Since information 

is commonly needed about a vertex's neighbors, the specific data structure used for 

implementation must be able to efficiently identify its next and previous vertices. 

Storing the vertices in a doubly linked list is one alternative. 

1.      World Model Data Structure 

The data structures required include a world structure used to hold information 

concerning the polygons that make up the world, a subpolygon table to define the 

subpolygons. 

The world, illustrated in Figure 130, is represented as a linked list of polygons, 

where each polygon is a double linked list of its vertices. Access to the world is gained 

163 



polygon n <D 

• •• 

Y Begin End 

1 

... ... ... 

n 

Figure 130. Representation of world data structure 

through a pointer to one of the polygons on the list. As the vertices are read, the 

subpolygons of each polygon are created. The vertex structure contains the identity of 

the vertex, the coordinates of each vertex, and whether or not the vertex is a convex 

vertex. 

The Subpolygon Table provides a means of finding all vertices which are con- 

tained in a given subpolygon. This data structure is an array which holds a pointer to 

the first and last vertex in the subpolygon (see Figure 130). Given that the identity 

of the subpolygon is known, it is used to find the image on the subpolygon. If a 

subpolygon is convex, then the first and last vertex are identical. 

164 



2.      Path Class Data Structure 
For a path / in a world W, the "path class", 7r, is represented by a directed 

v-edges sequence E. This data structure is an array of structures containing a left 

and right subpolygon identification (see Table XII). 

Left Subpolygon Right Subpolygon 
T, T 1 3 

... ... 

T 1 n 

Table XII. Representation of path class data structure 

3.      Image Data Structure 
An image structure contains the identity of the feature type (i.e., edge or 

vertex) which contains the image point, pointer to vertex v, (in vertex type, vertex 

V{ is one of the vertices of B but in edge type, the image lies on edge u,-y?(u,-)), the 

orientation from a point p to an image, and the closest distance from a point p to its 

image (see Table XIII). Following each motion cycle of the vehicle, image is updated. 

Image Structure 

Object Type Containing Image (Vertex or Edge) 

Pointer to a vertex v 

Orientation 

Closest Distance 

Table XIII. Representation of image data structure 

165 



In Table XIII, Object Type is integer type which indicates image type. The 

type of orientation and closed distance from a point p to its image are double. 

B. POLYGON TRACKING EXPERIMENTAL RESULTS 

The polygon tracking algorithms described in Chapter V have been imple- 

mented in MML-11 (see Chapter IX), and tested on experimental robot Yamabico-11. 

The results show that the algorithms are practical for the robot motion planning and 

motion control. 

In Figures 131, the vehicle is supposed to track a ccw polygon with ccw di- 

rection, where its initial configuration q0 = ((63,450), —7r/2,0), the safety clearance 

do = 80, the speed v — 30cm/sec, and the value of smoothness, a = 20. 

The example in Figure 132 shows the result of the trajectory if the polygon 

is not rectlinear. This means that our algorithm is sufficiently general for arbitrary 

polygons. The vehicle is supposed to track a ccw polygon with ccw direction, where 

its initial configuration q0 = ((90,450), —7r/2,0), the safety clearance d0 = 80, the 

speed v = 30cm/sec, and the value of smoothness, a = 20. 

C. LOCAL MOTION PLANNING EXPERIMENTAL RE- 
SULTS 

Most of the motion planning algorithms described in this dissertation have 

been implemented in MML-11 (see Chapter IX), and tested on Yamabico-11. As 

above, the results show that the tested algorithms are applicable to the robot motion 

planning and motion control. The example in Figure 133 shows the result of different 

trajectories for the following path class. 

7T = [B4/B0][B4/Bs][B2/B5[B3/B5}. 

The initial configuration is ^0 = ((63,450),—7r/2,0), the safety clearance is d0 = 80, 

the speed is v = 30cm/sec, and the value of smoothness is a = 20,30. 

166 



In Figure 134, the vehicle's initial configuration is q0 = ((63,450), —7r/2,0), 

the safety clearance is d0 = 80, the speed is v = 30cm/sec, the value of smoothnessis 

<r = 20 and the path class is 

7T = [B4/B0}[B4/B5}[B4/B2)[B4/B,}[B4/B0}[B4/B5}. 

The example in Figure 135 shows the result when a vehicle is browsing ran- 

domly in the free space. The vehicle tracks the following path class where its initial 

configuration is q0 = ((90,120), 7r/2,0), the safety clearance is d0 = 80, and the speed 

is v = 30cm/sec. The path class is 

7T   =   [Bo/Bs] [B4/B5] [B4/B2] [B4/B1] [B4/B0] [B5/B0] [B5/B3] 

[B5/B2] [B4/B2] [B*IBX] [B4/B0] [B5/B0] [Bs/B3]. 

D.     SELF LOCALIZATION EXPERIMENTAL RESULTS 

To validate the self localization algorithm (see Section F in Chapter VII), we 

implemented the algorithm on the autonomous mobile vehicle Yamabico-11. The set 

of odometry-correction-related functions were incorporated into the MML function 

library (see Chapter IX). 

In the following subsection, we explain one experiment to verify the funda- 

mental correctness of the algorithm. 

1.      Single Landmark Experiment 

In this experiment, a single racetrack path with a single landmark was used. 

Yamabico moves repeatedly around this racetrack path whjch is composed of three 

separate path elements. Yamabico is programmed to make an odometry correction 

once per lap using a single landmark. In each lap of this racetrack path execution, the 

odometry correction is performed and the error configuration e is recorded. The re- 

sulting robot motion after applying odometry correction code is shown in Figure 136. 

Table XIV shows the raw experimental data obtained for the robot traveling ten laps 

at 30 cm/sec. Notice that the results show the error configurations for each lap are 

167 



small and nearly equal. This provides evidence that Yamabico's motion control and 

localization functions are precise and that the self localization algorithm is working 

as desired. 

Lap X 

(cm) 
y 

(cm) 
6 

(radians) 
e 

(degree) 
1 2.80471 0.24929 -0.00024 -0.01376 
2 0.69485 0.42072 -0.00286 -0.16395 
3 1.00984 0.42923 -0.00137 -0.07897 
4 0.13315 0.29099 -0.00244 -0.14047 
5 -0.89826 0.46305 -0.00444 -0.25449 
6 0.58927 0.49313 -0.00075 -0.04326 
7 -0.05586 0.10672 -0.00190 -0.10898 
8 0.46601 0.36223 -0.00084 -0.04867 
9 0.21211 0.95825 -0.00917 -0.05254 
10 0.28372 0.19450 -0.00070 -0.04016 

Table XIV. Odometry error correction (30 cm/sec) 

The average of the error configuration over ten laps at speed of 30 cm/sec is 

shown in Table XV. 

Ax 
(cm) 

Ay 
(cm) 

A6 
(radians) 

Ad 
(degree) 

0.52395 0.39659 -0.00247 -0.09451 

Table XV. Average odometry error correction (30 cm/sec) 

168 



Figure 131: Yamabico-11 polygon tracking and execution result (I) 

169 



Figure 132: Yamabico-11 polygon tracking and execution result (II) 

170 



■Bi 

B, 

B4 

a = 20 

B 5 • 

B2 

B3 

Figure 133: Yamabico-11 local motion planning and execution results (I) 

171 



ßi 

Bn 

B3 

B2 

Figure 134: Yamabico-11 local motion planning and execution result (II) 

172 



Bi 

Bn 

B4 

B2 

B3 

Figure 135: Yamabico-11 local motion planning and execution result (III) 

173 



landmark' 

1 / 

start" 

Figure 136: Odometry correction experimental using single landmark 

174 



IX.        YAMABICO-11 HARDWARE AND 
SOFTWARE ARCHITECTURE 

This Chapter introduces the hardware and software of the robot—Yamabico- 

11 which was used to test most of our algorithms experimentally. 

A.     HARDWARE SYSTEM OF YAMABICO-11 

Yamabico-ll (see Figure 137) is an experimental, wheeled untethered indoor 

mobile robot for AI and robotics research. It has been developed at the Naval Post- 

graduate School (NPS) over the last several years. However, the vehicle is a result of 

Dr. Yutaka Kanayama's long history of autonomous robotics research at the Univer- 

sity of Electro-Communications, the University of Tsukuba, Stanford University, and 

the University of California at Santa Barbara [38, 41]. Its main CPU board consists 

of the SPARC microprocessor with a 16 Mbyte RAM storage and is mounted on a 

VME bus. Besides that, the system includes a dual-axis controller for two motors 

and two shaft encoders, a tailor-made sonar board, and a serial communication board 

are also mounted on the VME bus. One lap-top computer is used for a real-time 

input/output device. The size is 60(W) by 60(L) by 70(H) centimeters. It weighs 

about 60 Kilograms. A differential drive kinematic architecture is used for the wheel 

system. Two 35 watt DC motors with shaft encoders are used with 1/24 gear boxes. 

Twelve 40KHz sonars and one CCD camera are mounted on board. Its power source 

consists of two 12-volt car batteries. When object code is downloaded from a UNIX 

system, the vehicle operates as an untethered (self-contained) autonomous robot. The 

Yamabico-ll hardware architecture is illustrated in Figure 138. 

1.      IV-SPARC-33 CPU 

The Ironies IV-SPARC-33 is a single processor, VMEbus Interface, CPU board. 

It contains a 25 MHz SPARC Integer Unit, a Floating Point Unit, and a Cache Con- 

troller and Memory Management Unit. The card installed in Yamabico has 64 Kbytes 

175 



Figure 137. Autonomous mobile robot, Yamabico-11 

176 



User 

UNIX 

System 

Figure 138. Block diagram of Yamabico-11 hardware architecture 

of cache, and 16 Mbytes of 80ns DRAM. It provides two RS-232 serial I/O ports, two 

programmable timers, and seven user-definable LEDs. 

The Ironies SPARC board contains 16 Mbytes of physical memory, yet provides 

32 bit addresses (4 GBytes). This 4 GBytes address space is logically divided into 

several regions. The three most important regions are the Local DRAM, Region 3, 

and Local I/O (see [34]). 

Internal interrupts are those generated on the CPU board. The two most 

important are the Timer 1 and Timer 2 interrupts. Timer 1 can be set to provide 

interrupts at 50, 100, or 1000 hz. Currently, MML11 uses Timer 1 to provide the 10ms 

(100 Hz) motion control interrupt. Timer 2 provides a broader range of interrupts, 

and is currently unused. 

External interrupts are those generated off the CPU board. The most impor- 

177 



tant are from the quad serial boards, and the sonar board, which are handled through 

the 7 VMEbus Interrupt Request lines. 

2.      SONARS 

11 

> 

Forward 

10 

4 

Figure 139. Yamabico-11 ultrasonic sonar configuration 

Yamabico's sonar hardware is extremely efficient because a dedicated sonar 

board with a microprocessor controls the sonar sensors [61]. Yamabico's main central 

processing unit is interrupted only when data becomes available from the sonar array. 

The sonar system provides user interface functions that control Yamabico's array of 

sonar range finders. At any point within a user's program, any of the twelve sonars 

may be enabled or disabled. This allows the user to operate a given sonar only when 

necessary for a particular application. 

Yamabico employs twelve Nippon Ceramic T40-16/R40-16 ultrasonic sonars, 

operating at 40 KHz and distributed around the periphery of the robot at 30 de- 

gree increments as shown in (Figure 139), approximately 35 cm above the floor [52]. 

178 



Each sensor is actually a pair of transducers, one to transmit the ultrasonic pulse 

and another to receive the echo. The self-contained sonar system runs on a VME 

motherboard and interfaces with the Yamabico-11's Central Processing Unit (CPU) 

via the VME bus. The sonar hardware design gives a range gate of 409 cm and a 

range resolution of 1 mm [55]. 

a.        Sonar Grouping 

O—— 

Sensor 

Data 

V:' 

s 

0 
2 

Driver 

Board 
1 

r\ 

__ Control 
COMMAND \J 

8 o  
11 0  

o  

Signals STATUS 

6 
4 

Driver 

Board 
2 

O^— Data 
7 r\ Registers \J 
5 o  

o  
Sonar Control 

1 
3 

Driver 
Board 

3 

Daughter Card 

0  
9 r\ 

BIM \J 
10 o—— 

VME Mother Card 

Figure 140. Yamabico-11 sonar hardware architecture 

In order to reduce sampling time, the twelve ultrasonic sonars were 

divided into three logical groups, with four sensors in each group. The sonars of a 

logical group are all pulsed simultaneously and thus reduqe the sampling time by 

a factor of four as compared to individual firing of the sonars. Group 0 consists 

of sonars 0, 2, 5 and 7; group 1 of sonars 1, 3, 4, and 6; group 2 of sonars 8, 9, 

10 and 11; and group 3 is a virtual group which consists of four permenent test 

values [61]. The axis of each sonar is oriented at 30 degree angles from its neighbors. 

Ranging is done on a group basis to prevent mutual interference. Additionally, the 

sonars are physically grouped in order to distribute the electrical load over the driver 

179 



boards evenly and thus minimize any electrical transients associated with operation 

of the sonar (Figure 140). The physical grouping connects sonars 0, 2, 8 and 11 to 

driver/amplifier board 1; sonars 4, 5, 6 and 7 to board 2; and sonars 1, 3, 9 and 10 

to board 3. The reader will note that pairs of sonars from logical groups are assigned 

to physical groups, for example, sonar 0 and 2 from logical group 0 are assigned to 

physical group (driver/amplifier board) 1. 

b. Sonar Range Calculation 

The sonar transducers operate at a constant frequency of 40 KHz. Since 

Yamabico's programmed maximum range is 409 cm, a sonar pulse width is 1 ms and 

the speed of sound in air is 340 m/sec, the maximum round trip time can be calculated 

as follows: 
,     .     . 409 cm 

round trip time =  ——— ;   x 2 F 34000 cm/sec 

This round trip time is the period during which a valid echo may be received and 

is referred to as the receive gate. This interval is derived by division of the sonar 

system's 2 MHz clock to ensure that the receiver is not falsely triggered by a direct 

path reception from it's adjacent transmitter. We opt to disable the receiver until the 

transimit pulse is complete. This will have the disadvantage of setting a minimum 

range equal to half the distance sound would travel in the time of a transmit pulse. 

The minimum range can be computed as follows: 

minimum range  = 34000 cm/sec X  1 msec x  0.5 =  17 cm 

The minimum range lies approximately 9 cm outside the periphery of the robot. In 

order to allow the measurement of the objects up to the periphery of the robot, the 

pulse width was decreased to 0.5 msec thus reducing the minimum range to 8.5 cm. 

However, additional time was needed to accommodate switching and setting within 

the circuitry; therefore, in actual practice, the minimum range is set by firmware to 

9.6 cm [61]. 

180 



c.        Sonar Interrupt Control 

The sonar control board is actually a daughtercard which rides on a 

VME bus mothercard. The mothercard carries address decoders, bus drivers and 

interrupt control circuitry in the Bus Interface Module (BIM). 

When the sonar has completed a ranging cycle an interrupt request is 

provided to the BIM. The BIM's control register holds information which determines 

whether an interrupt is to be generated or not, and if so which interrupt level is to be 

generated. Presuming an interrupt is generated, when the correct acknowledgment 

returns on the address lines the BIM's vector register provides the vector table entry 

where the central processor may find the vector to the interrupt handler. The correct 

interrupt level, the interrupt enable bit and interrupt vector are loaded to the BIM 

during software initialization. 

B.     MML-11 SOFTWARE ARCHITECTURE 

The Model based Mobile-robot Language MML is the driving force behind 

the robot [38, 41]. MML is a portable library of functions written in the ANSI C lan- 

guage in the UNIX environment. The library supports locomotion functions, sensor 

functions and other I/O functions. Currently, its eleventh version, called MML-11, 

is under development. 

All software routines on the robot were developed and downloaded to the robot 

via RS232 at a baud rate of 19200. The system consists of a kernel (including the 

MML functions) and a user program. Once a user program is downloaded and is 

triggered to execute, all operations are autonomous. 

From the robot control point of view, MML-11 is a programmable software 

system for mobile robot operation. The main procedure of the system conducts all 

necessary initializations for both hardware and software. After the initializations are 

done, a user program is called. Besides the main procedure, MML-11 mainly consists 

of the motion control subsystem and the sonar control subsystem. 

181 



For user application programming convenience, the system provides a set of 

well-defined functions called user functions as the interface between the user and 

the the system. The user functions are categorized into four modules: 

• Operating System Module, 

• Motion Planning Module, 

• Motion Control Module, and 

• Sonar Control Module. 

1.      System Architecture 

Operating System 
Module Initialization 

/ / / 
i 
i 
i 
i 
i 
i 
i 

I Motion Planning 
Module 

■<i 

User Program 
Motion Control 

Module i 
i 
i 
i 

Sonar Control 
Module 

1 

Termination 

Function Library System Main Body 

Interruptin g Request          »• 
i 
i 
i 
i • 

Function Supp Sonar Control Motion Control 
Sequential Execution              ^ Subsys »ten l Subsys »tern 

Figure 141. MML-11 software conceptual architecture 

This software is developed with a special architecture which incorporates a 

sequential structure and an interrupt-driven structure. The system initialization and 

the user application program are executed sequentially in the main procedure of the 

system. The motion control and sonar control subsystems are periodically called for 

182 



execution via interrupt requests for the required motion control and/or sonar control 

operation. The MML-11 software architecture is shown in (Figure 141). 

2. Interrupt-driven Subsystems 

There are three primary tasks that may be running at any given time. The 

motion control subsystem is the highest priority task, performing all motion control 

computations and translating them into low-level wheel controls. It is designed to 

interrupt other tasks every 10 msec. The next highest priority task is the sonar control 

subsystem, which processes all incoming sonar returns and generates line segments 

from individual sonar returns from obstacles if required. It issues an interrupt request 

every 50 msec. The lowest level priority, but still a basic, task is the user program. 

This part of the system feeds both immediate and sequential commands to the motion 

control subsystem through a command queue. All higher priority tasks interrupt the 

tasks with lower priorities to gain the CPU control. The design of MML-11 subsystems 

will be described in the following sections. 

3. RealTime Operating System 

The Yamabico-11 onboard CPU, IV-SPARC 33, provides no standard operat- 

ing system functions but a small set of libraries for console I/O. All other operating 

system primitives, such as interrupt handling, memory management, data formatting 

and logging must be provided by the MML system. 

4. User Program 

In this software, the robot's motion is instructed by the user program, which 

sends commands to the motion control system and/or sonar control system. However, 

motion planning - and control - specific concepts are hidden from the user. Only those 

defined as user functions are allowed to be considered by the user program. Sonar data 

is available to the user in either a raw or processed format via user sonar functions. 

In "APPENDIX. USER PROGRAM EXAMPLES", we give a sample user program. 

The MML-11 user function specifications will be described in Section C. 

183 



5.      MOTION CONTROL ARCHITECTURE 

User Program 

Immediate 

Commands 

(Foreground Process) 

(Background Process) 

Sequential 

Commands 

Instrueito» Buffer  

I 
Motion Control Subsystem 

Figure 142. MML-11 motion control software architecture 

The motion control must be repeatedly performed in a short period. It is 

difficult to impose this control in user's program. As we design an interrupt-driven 

software system, the foreground job and background job concepts are introduced 

into MML-11 motion control software. In MML-11, the motion control mechanism 

is designed in such a way that the execution of user program is somewhat separated 

from motion control. This allows the user being able to program applications by using 

simple functions. The user program is considered the foreground process which sends 

either immediate or sequential commands to the system. The robot motion control 

task conducted by motion control subsystem is considered the background process 

which performs motion control to acheive the motion instruction it gains control at a 

184 



frequency of 10 msec. The immediate commands in the user program will be executed 

immediately, while the sequential commands will be enqueued to a buffer called the 

instruction buffer waiting for execution sequentially. The motion control subsystem 

fetches an instruction sequentially. When the execution of one instruction is finished, 

the control subsystem picks and executes another instruction from the buffer until 

the buffer is empty. The motion control architecture is illustrated in Figure 142. 

6.      Motion Control Subsystem 

Motion control subsystem, named MotionSysControl, is the foreground pro- 

cess of the entire system. It is designed to compute all data necessary for motion con- 

trol by interrupting system main procedure (or user program) every 10 msec. When 

the interrupt request is granted, this subsystem gains the control of CPU. It actually 

acts as an interrupt service routine. 

MotionSysControl performs following computations for the robot motion con- 

trol in order to accomplish its mission. 

• Measure the distance traveled, As, in a cycle by the reading robot's left and 
right shaft encoders. 

• Compute the orientation changes, A0. 

• Localize current configuration, q. 

• Compute commanded linear and rotational velocity, VL,VW, for next cycle. 

• Translate commanded velocity into control signals, PWM, for driving motors. 

• Transition point simulation to decide whether to read next instruction. 

By reading the robot's left and right shaft encoders, the process can measure 

the distance traveled. Computations of distance traveled and orientation changes 

are done in order by a module with outputs As and A0. These data will be used 

by localization module to compute robot's current configuration. The current con- 

figuration q is needed for motion rule module to compute commanded linear and 

rotational wheel velocities, VL,VW, for next cycle. These velocities are translated in 

185 



left and right PWMs as signals to drive corresponding motors. The last step in Mo- 

tionSysControl is to determine whether to start transitioning to the next path. If it 

decides to transition, the next motion commanded in the instruction buffer will be 

read and followed. 

C.     MML-11 LANGUAGE SPECIFICATION 
In this section, we describe the design of user functions which will be used 

as interface between user and MML-11 software. The specifications of functions for 

motion control, sonar control and geometric calculation are presented. Some of the 

basic data structures which will be used to describe the functions are presented also. 

The user functions are categorized into following subsets: 

• Geometric functions, 

• Motion planning functions, 

• Motion control functions, including sequential functions and immediate func- 
tions, 

• Sonar control functions, and 

• Self localization functions. 

The geometric functions simply "define" some utility functions for algebraic 

manipulation of geometric variables. The motion planning functions provide the user 

with simple interface functions to build a world model and to conduct motion plan- 

ning when given a specific mission. The motion control functions include sequential 

functions and immediate functions. The sequential functions define a set of motion 

control commands that are stored in a buffer when they are used in the user program 

and are executed sequentially as the robot's background tasks. The immediate func- 

tions define the commands which take effect immediately when they are executed in 

a user's program. The sonar control functions are the functions used to control sonar 

operation and to obtain sonar data. 

186 



1.      Data Structures 
• Point 

The POINT structure is used to describe a position in a two-dimensional 
cartesion coordinate system. The structure includes a double X and a double 
Y. 

• Configuration 

The CONFIGURATION is the standard structure for describing location 
and direction for an object. It consists of Posit, with type of POINT, which 
identifies an objects position in two-dimensional cartesion coordinates. An- 
other element is Theta of type double that describe's the object's orientation 
in relation to the X coordinate. Finally, there is another double called Kappa 
that represents the curvature of an object's path. 

• Path Element 

The PATH-ELEMENT data structure is used to describe and store the 
various types of movements. This data structure consists of config which is 
of type CONFIGURATION. It holds the configuration of the path that the 
robot is to follow. PATH-ELEMENT also contains pathType, which is of 
type PATH-TYPE. A PATH-TYPE is a data structure used to identify the 
various paths that are available to the robot. It consists of the mode which is 
of type MODE and class which is of type CLASS. Type MODE is an enu- 
meration type that gives a name to each path that the robot follows. Presently, 
the modes that are available include NOMODE, ENDMODE, STOPMODE, 
PATHMODE, ROTATEMODE, KSPIRALMODE, PCMODE and FOLLOW- 
MODE. Type CLASS, which is also an enumeration type, is used to name and 
categorize the various path mode types. The list of classes include NOCLASS, 
LINECLASS, CIRCLECLASS, BLINECLASS, NBLINECLASS, CCWLEFT, 
CCWRIGHT, CWLEFT and CWRIGHT. 

• Velocity 

The VELOCITY structure is used to describe a velocity. The data structure 
is made up of two doubles that represent the linear and rotational elements of 
velocity. They are appropriately named Linear and Rotational, respectively, 
in the VELOCITY structure. 

187 



Sonar Number SonarPosit.X SonarPosit.Y SonarTheta 

0 0.0 -0.5 0 
1 -23.0 13.1 5TT/6 

2 -22.6 -1.0 7T 

3 24.7 -14.6 -TT/6 

4 13.4 21.3 TT/3 

5 0.0 20.6 TT/2 

6 -12.6 -21.3 -2TT/3 

7 0.0 -20.5 -TT/2 

8 -13.4 21.3 2TT/3 

9 -23.5 -14.9 -5TT/6 

10 12.1 -21.3 -TT/3 

11 25.2 14.1 TT/6 

12 0.0 0.0 0 
13 1.5708 21.5 1.5708 
14 4.7124 21.5 4.7124 
15 0.0 0.0 0 

Table XVI. Sonar position 

• Sonar Table 

The sonar table SONARD contains not only the new range (d) of type dou- 
ble and the old range (dO) of type double but the robot's position at the time 
of the range (posit.X, posit.Y of type POINT and t) of type double and 
the global coordinates corresponding to that range and position (global.X 
and global.Y) of type POINT. The sonar table also contains the position of 
the individual sonar relative to the robot's coordinate system (SonarPosit 
of type POINT, the euclidean distance from robot center to sonar center and 
SonarTheta of type double, the angle from the robot's x-axis to the sonar 
center) of type double. Table XVI shows where each sonar on the vehicle. 
The sonar table also contains two flags which guide the operation of the sonar 
system. These are fitting, with type of integer, which indicates linear fitting 
requests and update, with type of integer, which inform the sonar system 
of the presence of new data in d. An array of sixteen of these structures is 
formed, and is then indexed by sonar number. 

• Segment Descriptors 

The segment structure (SEGMENT_RES) contains all the data necessary to 

188 



completely describe a line segment. This includes an integer to represent the 
sonar which recorded the segment, the number of data points thus far included 
in the line segment (mOO) and real numbers to record the endpoints (start.X 
and start.Y, end.X and end.Y), the angle and length of a normal to the 
segment from the origin (alpha and r), the length of the line segment. This 
structure is arranged in a two dimensional array. One index is the number of 
the sonar from which the segment is derived; the other index holds an inte- 
ger (0 through 29). This segment list can hold the 30 most recent segments 
described by a given sonar. It is presumed that any navigation program will 
not require more history than these thirty segments; if so, the second index of 
segment list can be increased. 

• Sonar Data Logs 

The sonar data logs are arrays to which the user program writes data during 
it's execution. These logs are converted to ASCII strings at the completion of 
the user program and those strings are in turn transferred to the host when all 
data are ready to down load. There are three types of data logs: the raw data, 
the global data and the segment data. For each log type, there is correspond- 
ing data file. The filenames created on the host will depend upon the type 
of logging performed and the sonar number. The tracing frequency is used to 
specify how many sonar cycles are skipped before data is logged. A value of 
1 or less causes the logging to occur with each cycle. The raw data records 
the range and the robot's position and orientation at the time of the range. 
The global data records the range and global x and y values for sonar returns. 
The segment data records line segments in the form of segment descriptors 
previously described. 

2.      User Function Specification 

1. Geometric Functions 

• Define Configuration 

Synopsis: CONFIGURATION defineConfig(x, y, theta, kappa) 
Parameters:        double       x; 

double        y; 
double        theta; 
double        kappa; 

Description: 

When passed the values that define a configuration (x, y, theta, kappa), this 
function allocates and assigns a configuration. It returns a configuration. 
The configuration can be used to represent a path which is either a line or 

189 



a circle. If the configuration is defined with curvature zero, i.e. K = 0.0, 
it specifies a straight line passing through the point (x,y) with orientation 
6. If its curvature is greater than zero, i.e. kappa > 0.0, the path is a 
counterclockwise circle. If kappa < 0.0, then the path is a clockwise circle. 
Figure 143 illustrates theses concepts. 

kappa > 0.0 (counterclockwise) 

kappa = 0.0 (straight line) 

kappa < 0.0 (clockwise) 

Figure 143. A configuration represents a line or a circle 

• Inverse 

Synopsis: 
Parameters: 
Description: 

CONFIGURATION inverse(g) 
CONFIGURATION       q; 

The purpose of this function is to calculate the inverse of a given configu- 
ration such that: q * g-1 = e. 

• Compose 

Synopsis: 
Parameters: 

Description: 

CONFIGURATION compose^, 92) 
CONFIGURATION       9l; 
CONFIGURATION       q2- 

The purpose of this function is to calculate the composition of two con- 
figurations. Specifically, the function takes parameter q\ and composes it 
with parameter qi to calculate and return the composed value. 

• Circular Arc 

Synopsis: 
Parameters: 

Description: 

CONFIGURATION CircleArc(/, alpha) 
double        /; 
double        alpha; 

190 



Given a tangential orientation alpha and the arc length / in a curve, this 
function computes its configuration in the local coordinate system. In the 
case of motion control, length would actually be As and alpha would be 
A9. The function can be called to determine the configuration after an 
incremental move in the local coordinate system of the original configura- 
tion. 

• Euclidean Distance 

Synopsis: double euDis(pl,p2) 
Parameters:        POINT      pi; 

POINT     p2; 
Description: 

This function computes the Euclidean distance between two given points. 

• Normalize 

Synopsis: double norm(theta) 
Parameters:        double       theta; 
Description: 

This function returns a normalized angle in the range [—7r,7r]. 

2. Motion Planning Functions 

• Create World Model 

Synopsis: void createPolyModel() 
Description: 

This function builds a world of polygons. It will generate the set of data 
which is needed in planning robot's motion. 

• Image 

Synopsis: Image convexImage(p, B, direction) 
Parameters:        POINT      p; 

int B; 
int direction; 

Description: 

This function finds the image of a given point p in free space on a polygon 
B. The parameter direction indicates the direction ccw or cw. The output 
of this function is structure containing the identity of the feature type 
(edge or vertex) which contains the image point, pointer to vertex u,, the 
orientation from a point p to an image, and the closest distance from a 
point p to its image(see Table XIII in Chapter VIII). 

191 



• Polygon Tracking 

Synopsis: void polygonTracking() 
Description: 

The purpose of this function is to indicate the direction of tracking a poly- 
gon (ccw or cw). This function sets the value of the current path element 
in motion control to the path element passed in as a parameter. 

• Polygon Planning 

Synopsis: VELOCITY FollowRule(ac£ua/, commanded) 
Parameters:        VELOCITY       actual; 

VELOCITY       commanded; 
Description: 

This function returns the robot's linear and rotational velocities to follow 
a polygon in ccw or cw direction. 

• Motion Tracking 

Synopsis: void motionTracking() 
Description: 

The purpose of this function is to set the value of the current path element 
in motion control to the path element passed in as a parameter. 

• Local Motion Planning 

Synopsis: VELOCITY LocalMPRule(ac£ua/, commanded) 
Parameters:        VELOCITY       actual; 

VELOCITY       commanded; 
Description: 

This function generates the motion instructions along the path. Those 
instructions will be taken to drive the robot until it stops. 

3. Motion Control Sequential Functions 
The sequential functions define a set of motion control commands which are 
stored in a buffer that acts as an interface between user and robot. When the 
user program is being executed, commands of this type included in the user 
program do not take effect immediately instead they are loaded in buffer as 
motion instructions. The motion control system reads the instructions from 
the top of the buffer sequentially and controls the robot's motion accordingly. 
The specifications of those functions are listed below. 

192 



• Tracking a line 

Synopsis: void line(<7) 
Parameters:        CONFIGURATION        q; 
Description: 

The function defines a command that orders the robot to follow the line 
or circle specified by the configuration q. If the robot's last configuration 
before the command is executed is not on the track of the line specified, 
the robot uses the steering function to transfer to the line with a smooth 
motion. Figure 144 illustrates robot's behavior when executing line(g) 
with a straight line q. 

vehicle 

Figure 144. The line tracking function 

• Tracking the Line form its Back and Stopping 

Synopsis: void bline(g) 
Parameters:        CONFIGURATION        q; 
Description: 

This function defines a command that orders the robot to track the line 
specified by the configuration q from its back. If the robot's image is on 
the back half of the line, the robot tracks the line as function line()x and 
stops when its image reaches the configuration. If the robot's image falls 
on the forward part of the line initially, the robot would not move (see 
Figure 145). 

• Tracking the Line form its Back and no Stopping 

Synopsis: void nbline(g) 
Parameters:       CONFIGURATION        q; 
Description: 

This function is similar to the backward line function, bline(), except the 
vehicle does not stop at the configuration q. The vehicle may transition 
to another path element after reaching the configuration q if another path 
element command follows. To stop the vehicle, the stop() function must 
follow it (see Figure 146). 

193 



vehicle 

The robot would not 
move in this case 

Figure 145. The backward line tracking with stopping function 

vehicle 

Figure 146. The backward line tracking with no stopping function 

• Set Robot's Configuration 

Synopsis: 
Parameters: 
Description: 

void setRobotConfig(9) 
CONFIGURATION       q; 

This function sets robot's configuration to a given configuration q. 

4. Motion Control Immediate Functions 

• Set Path Element 

Synopsis: void setPathElement(j9af/i) 
Parameters:        PATH_ELEMENT path; 
Description: 

This function sets the value of the current path element in motion control 
to the path element passed in as a parameter. 

• Set Robot's Configuration Immediately 

Synopsis: void setRobotConfigImm(<7) 
Parameters:        CONFIGURATION        q; 
Description: 

194 



This function sets robot's configuration to a given configuration q imme- 
diately. 

• Get Path Element 

Synopsis: PATH.ELEMENT getPathElement() 
Description: 

This function retrieves the current path element in motion control module. 

• Set Robot's Linear Speed Immediately 

Synopsis: void setLinVelImm(speec?) 
Parameters:        double        speed; 
Description: 

This function sets the robot's linear velocity immediately. 

• Set Sigma Immediately 

Synopsis: void setSigmaImm(.si(7ma) 
Parameters:        double        sigma; 
Description: 

This function sets the robot's sigma which control the sharpness of its 
trajectory when the robot is turning. 

• Set Total Distance Traveled Immediately 

Synopsis: void setTotalDistancelmm(Jisfance) 
Parameters:        double        distance; 
Description: 

This function sets the total distance travelled by the robot to the value 
passed as a parameter. 

• Get Total Distance Traveled Immediately 

Synopsis: void getTotalDistanceImm() 
Description: 

This function returns the total distance travelled by the robot. 

• Stop Immediately 

Synopsis: void stopImm() 
Description: 

This function stops the robot immediately with the current acceleration 
rate until the speed reaches 0. 

195 



• Logging Motion Data 

Synopsis: void 'Mot\onlog(Filename, Frequency, Buff er Size) 
Parameters:        char Filename; 

int Frequency; 
int BufferSize; 

Description: 

This function prepares the tracing system to log motion data. Tracing is 
automatically turned on after this function is called. The Filename speci- 
fies a file name that will be used to store data when the data is uploaded to 
the host. Frequency specifies how many motion cycles are skipped before 
data is logged. 

5. Sonar Control Functions 

• Enable Sonar 

Synopsis: void EnableSonar(5'onariVum6er) 
Parameters: int S onar N umber; 
Description: 

This function enables sonar with Sonar Number. More precisely, it enables 
the sonar group that contains Sonar Number, which causes all the sonars 
in that group to echo-range and write data to the data registers on the 
sonar control board. 

• Disable Sonar 

Synopsis: void DisableSonar(S'onarArum6er) 
Parameters: int SonarNumber; 
Description: 

This function removes SonarNumber from the enabled_sonars list. If 
SonarNumber is the only enabled sonar from it's group, then the group is 
disabled as well and will stop echo ranging. This has benefit of shortening 
the ping interval for other groups that remain enabled. 

• Get Sonar Returns 

Synopsis: double Sonar(S onar Number) 
Parameters: int SonarNumber; 
Description: 

This function returns the distance (cm) sensed by SonarNumber ultrasonic 
sensor. If no echo is received, an INFINITY (999999.0) is returned. If the 
distance is less than 10 cm, then a 0 is returned. 

196 



• Calculate Global 

Synopsis: void CalculateGlobal^oraarjVumfcer) 
Parameters: int Sonar Number; 
Description: 

This function calculates the global x and y coordinates for the range value 
and robot configuration in the sonar table. The results are stored in the 
sonar table. 

• Enable Linear Fitting 

Synopsis: void EnableLinearFitting(5'onarA^um6er) 
Parameters: int SonarNumber; 
Description: 

This function causes the background system to gather data points from 
SonarNumber and form them into line segments. 

• Disable Linear Fitting 

Synopsis: void DisableLinearFitting(5'onarA^um6er) 
Parameters: int SonarNumber; 
Description: 

This function causes sonar system to cease forming line segments. 

• Logging Sonar Data 

Synopsis: void SonarLog(Freg, BSize, SonarNumber, LogType) 
Parameters: int Freq; 

int BSize; 
int SonarNumber; 
int LogType; 

Description: 

This function prepares the tracing system to log sonar data. The tracing 
Freq specifies how many sonar cycles are skipped before data is logged. A 
value of 1 or less causes the logging to occur each cycle. The BSize specifies 
how many bytes of storage to allocate to save the data. If a value of 0 is 
specified, a default size is used. The SonarNumber specifies the sonar you 
wish to log. The LogType specifies the type of logging performed. There 
are three types. 

— SONAR_RAW logs only new sonar data. 

- SONAR_GLOBAL logs global sonar data. 

- SONAR_SEGMENT logs segment data. 

— SONAR_ALL logs all three types of data. 

197 



Tracing is automatically turned on after this call. The filenames created 
on the host will be depend on the type of logging performed and the sonar 
number. For example, if logging were initiated using: 

SonarLog(0, 0, 3, SONAR_SEGMENT) 

then the filenemes SEGMENT.3 will be created on the host. 

6. Self Localization Functions 

• Wait Segment 

Synopsis: void WaitSegment^onariVumfcer) 
Parameters: int SonarNumber; 
Description: 

This function is busy waiting until the line segment being built is com- 
pleted. 

• Get Segment Configuration 

Synopsis: CONFIGURATION GetSegmentConfig() 
Description: 

This function returns the observed configuration of the object after applied 
the linear fitting algorithm. 

• Match 

Synopsis: int Match( qsegment, qmodel) 
Parameters: CONFIGURATION qsegment; 

CONFIGURATION qmodel; 
Description: 

This function compares between observed segment qsegment and model 
wall segment qmodel. 

• Odometry Correction 

Synopsis: void CorrectOdometryError^segmerai, qmodel) 
Parameters: CONFIGURATION qsegment; 

CONFIGURATION        qmodel; 
Description: 

This function corrects the vehicle's odometry error if there is a difference 
between where the vehicle thinks it is and where the vehicle really is. 

198 



X.        CONCLUSIONS 

This dissertation addressed new motion planning and real time localization 

methods using proximity under the structure of a layered planning approach. This 

approach divides the planning task into global path planning and local motion plan- 

ning. Three major contributions to the field of robotics were made from the reseach 

conducted in this dissertation. The first is the development of the theory of homotopic 

decompositions which solves the problem of homotopic class representation using a 

Voronoi diagram. A homotopic decomposition captures the topology of the world in 

terms of homotopy classes. A global path planner was able to deliver a plan repre- 

senting a distinct homotopy class making it available for the local motion planning, 

which is responsible for executing the global path plan. Second, the safe local motion 

planning algorithm is the first steering function algorithm to provide a theoritical 

and a practical solution to safe motion planning problem, a great step in promoting 

motion planning in the real world. The effectiveness of the method of using the left 

and right polygons was confirmed. The problem making a smooth motion when the 

vehicle gets close to an intersection of two distinct boundaries was solved. A striking 

advantage of this method is that this is effective in more dynamic environments. This 

method may be useful even in unknown worlds as well, because the images on the 

polygons can be taken by sensors instead of through information extraction from the 

model. Third, a transparent method of robust real-time positional-uncertainty elim- 

ination (self localization) was described. The problem of gradual error accumulation 

when the robot moves long distances was solved. This method is a simple application 

of group theory that requires very little computational overhead. 

Another contribution was The description of a geometrical algorithm for find- 

ing images in real-time for safe motion planning. 

The algorithms targeted for Yamabico-11 were first developed on a simulator 

then successfully transported to the real robot. 

199 



200 



XI.        FUTURE RESEARCH 

This chapter presents a few topics for future research in the several areas 

related to the topics covered herein. 

Configuration-to-configuration motion planning is a most difficult planning 

problem. It must be addressed in final parking maneuvers. There is clearly a need to 

solve the final motion planning problem [47, 9]. 

The path planner uses the geometrical constraints of the environment and 

kinematic and dynamic constraints of the robot to provide the global reference path 

plan. This layer optimizes the cost function of the mission using the known part of 

the environment. In a partially-known static environment, this optimal path will be 

achieved only if there is no interaction of the robot with the unknown portion of the 

environment, a highly unlikely event. Nonetheless, the global path will serve to guide 

the actions of the local planner when faced with unforeseen obstacles. However, a well 

defined theory exactly describing how to avoid the previously unknown but recently 

detected obstacle still requires much work [40, 6, 1,5, 7, 8, 62]. 

It is impossible to absolutely guarantee collision avoidance in a dynamic envi- 

ronment. Moreover, it is almost pointless to specify optimal trajectories in a dynamic 

environment, since the data become obsolete with time. As the information becomes 

older, it becomes less reliable. Systems which build detailed reconstructions of the 

environment from sensor data suffer from delays due to information processing times. 

Therefore, the representation of the known and recently discovered environment fea- 

tures must be made efficiently available to modules that have short reaction time 

requirements. The representation is vital in integrating higher-level plan objectives 

with local behavior decision processes and in minimizing the loss of information when 

unforeseen obstacles arise. There seems to be no single algorithm to handle all pos- 

sible cases in a dynamic environment. Consequently, the use of multiple algorithms, 

multiple sensors, and multiple responses seems to provide the most likely chance of 

201 



successfully achieving a goal. Future research is needed to determine what informa- 

tion is relevant to achieve a goal and what details of the information are necessary 

to utilize sensors and actuators effectively? In a dynamic environment, path plans 

should serve as an aid to the selection of appropriate motion, rather than constraints 

upon that selection in many of the cases [21]. 

The large repertoire of behaviors and strategies used by the local motion plan- 

ner may require a variety of sensing capabilities. A vision processing system would 

also aid in obstacle avoidance maneuvers at a distance beyond the current range of 

the ultrasonic sensors. 

202 



APPENDIX A. NORMALIZING ANGLES 

Generally, testing whether an angle between two directions is positive or neg- 

ative gives us an idea on the relation between the two directions. However, in some 

situations, a simple subtraction operation does not work. For example, if 0\ = ^ and 

#2 = -f21, the angle a between them becomes 

= 0-6   = - — - — = - — a       2       1 4        4 2 

However, this angle is naturally considered as a | left turn rather than a ^ right 

turn. To handle this situation, we use the normalization function $: % —> [—7r,7r]. 

For instance, 

•(!)-(T)-CTH 
and 

$(7T) = $(-7r) = 7T 

Definition: The normalization function $ is formally defined by the following condi- 

tions: 

1. For any angle a EH, 
—■K < $(a)  < 7T 

2. For any angle a £ 11, 
a = $(a) mod 2n 

The normalization function $: TZ —> [—rr, 7r] can be defined using a recursive definition: 

$(a — 27r)   if a > it 

9(a) = ^  $(a + 27r)   if a <-TT 

ar otherwise 

203 



204 



APPENDIX B. LEAST SQUARES LINEAR 
FITTING 

Let 

Ä= {Pl,---,Pn} = {(Xl,yi),...,(a:n,yn)} 

be a set of n points, We obtain the moments rrijk of R with 0 < j, k < 2; j' + k < 2. 

n 
mik = Y,x3yk 

Notice that m0o = n. The centroid C is given by 

/mio  ro0A      , , 

\m0o  mmJ 

The secondary moments around the centroid are given by 

Mm = Yl(x* ~ V*f = m2o - 
i=i moo 

Mn = ^2(xi - nx){yi - ny) = mn —— 
t=i "^oo 

m„2 

^02 = J2(yt - Vyf = m02 - 
^01 

,=i moo 
We adopt the parametric representation of a line with constants r and a. If a point 

p = (x,y) satisfies an equation 

x cos a + y sin a = r, (B-l) 

then the point p is on a line L whose normal has an orientation a and whose distance 

from the origin is r (Figure 147). This representation has a striking advantage as 

opposed to the usual method of using a formula y = f(x), because the former method 

has no difficulty in expressing lines that are perpendicular to the X axis. Note that 

two axes X and Y are symmetric in the plane. The signed distance (or residual) Si 

from point p, = (a:,-, yi) to the line L = (r, a) is 

Si = x, cos a + y, sin a — r. (B-2) 

205 



>-   X 

Figure 147. Fitted line 

Therefore, the sum of the squares of all the residuals is 

n 

S = ^2\(Xi COS a + Vi sm a) ~ r) 
i=1 

Since the line which best fits the set of points is supposed to minimize S, the optimum 

line (r, a) must satisfy 
dS__ 9S_0 

dr      da 

Thus, 

ÖS 

dr 

n 

=   — 2yV(x,-cosQf + 3/,-sino:) — r) 
i=1 

- 2 ' Ei - Ei cos 
\i=l <«=1 

a- (£y«I sinal 

=   2(r moo — rnio cos a — moi sin a) = 0 

and 
mio ,  m01   . 

r = cos or -\ sm a = fix cos a + fiy sm a 
moo ra0o 

where r may be negative. Substituting r in Eq. B.l by Eq. B.3, we obtain 

ÖS 
=   2 

»=i 

(B.3) 

da 

n 

-   2 X)((x» ~ I1*)cos a + (2/'' ~~ A*!/)sin a) (-(xi - Hx) sin a + (t/,- - fiy) cos a) 

206 



n 
2X)((2/«' ~ Vy)2 ~ (xi ~ Vx)) sin a cos a 

»=i 
n 

+ 2 ^{xi - ßx){yi - fiy){cos2 a - sin2 a) 
»=i 

=   (M02 - M2o)sin2a + 2Mn cos 2a = 0 

Therefore 

2a = atan2(-2M„, M02 - M20) (B.4) 

Note that, by Eq. B.4, 2a € [—7r,7r], and then a € [-7r/2,7r/2]. Eqs. B.3 and B.4 are 

the solutions to the least squares problem. 

Now, we do some pre-filterring of the data in order to remove points from the 

data stream which are clearly not colinear with the existing points of set R. When a 

new input p — (x, y) is given to this algorithm, we can compute how far it is located 

from the previously obtained line L (Eq. B.2). The distance is 

8 = x cos a + y sin a — r. 

If \S\ is greater than a given threshold value, we finish the line-fitting task to complete 

the line segment and to start a new segment with this last point. 

Since the residual Si of a point pi = (x{, r/t) is 

Si = Xi cos a + y% sin oc — r, 

the projection, p'{ of the point pi onto the major axis is 

p'i = (xi — Si cos a, J/,- — Si sin a). 

We will use p[ and p'n as estimates of the endpoints of the line segment L obtained 

from the set of data points R (Figure 148). 

207 



-»-   X 

O 

Figure 148. End points 

208 



APPENDIX C. USER PROGRAM EXAMPLES 

Function  : user() 

Purpose  : For Model Based Motion Planning Demo. 

Parameters: void 
Returns  : void 
Comments  : Aug. 20, 1996 Mahmoud Wahdan 

#include "user.h" 

«define FREQUENCY 50 

void userlO 
void user2() 
void user3() 
void user4() 

void user() 

{ 
int selection; 

printf("\n Enter 1 for racetrack without localization correction."); 
printf("\n Enter 2 for racetrack with localization correction"); 
printf("\12 Enter 3 for POLYGON TRACKING"); 
printf("\12 Enter 4 for LOCAL MOTION"); 

printf("\n\n The choice is: "); 

selection = GetlntO; 

switch (selection) 

{ 
case 1: 

userlO; 
break; 

case 2: 

user2(); 
break; 

case 3: 
user3(); 

209 



break; 
case 4: 

user4(); 
break; 

default: 

break; 

} 
} 

Function : userlO 
Purpose  : racetrack without localization correction 
Parameters: void 
Returns  : void 
Comments  : Aug. 20, 1996 Mahmoud Wahdan 

void userl() 

{ 
CONFIGURATION start; 

CONFIGURATION reference.path; 
CONFIGURATION deltal, delta2, delta3; 

int laps; 

int lap_count = 0; 

start = defineConfig(77.0, 512.0, HPI, 0.0); 
deltal = defineConfig(225.0, 0.0, 0.0, 0.0); 
delta2 = defineConfig(-325.0, -100.0, -PI, 0.0); 

delta3 ■ defineConfig(-100.0, -100.0, -PI, 0.0); 

reference_path = start; 

setLinVelImm(35.0); 
setSigmaImm(30.0); 

setRobotConfiglmm(start); 

printf("\n Enter desired number of laps. "); 
laps=GetInt(); 

210 



while (lap.count < laps) 

{ 
reference_path = compose(&reference_path, ftdeltal); 

nbline(reference_path); 

reference.path = compose(&reference_path, &delta2); 
nbline(reference_path); 

reference_path = compose(&reference_path, &delta3); 

if(lap_count == (laps-1)) 

bline(reference_path); 

else 

nbline(reference_path); 

++lap_count; 

} 

Function : user2() 
Purpose  : racetrack with localization correction 
Parameters: void 
Returns  : void 
Comments  : Aug. 20, 1996 Mahmoud Wahdan 

void user2() 

{ 
CONFIGURATION start; 

CONFIGURATION reference.path; 
CONFIGURATION deltal, delta2, delta3; 
CONFIGURATION qsegment; 

CONFIGURATION qmodel; 

int laps; 

int lap.count = 0; 

int match_seg; 

211 



Start = defineConfig(77.0, 512.0, HPI, 0.0); 
deltal = defineConfig(225.0, 0.0, 0.0, 0.0); 

delta2 = defineConfig(-325.0, -100.0, -PI, 0.0); 
delta3 = defineConfig(-100.0, -100.0, -PI, 0.0); 
qmodel = defineConfig(0.0, 612.14, -HPI, 0.0); 

setLinVelImm(30.0); 

setSigmaImm(30.0); 

reference_path - start; 

setRobotConf iglnun(start); 

MotionLog(NULL,FREQUENCY,0); 

EnableSonar(S270); 
EnableLinearFitting(S270); 

printf("\n Enter desired number of laps. "); 
laps=GetInt(); 

while (lap_count < laps) 

{ 

reference.path = compose(&reference_path, ftdeltal); 
nbline(reference_path); 

while(l) 

WaitSegment(S270); 

qsegment = GetSegmentConfig(); 
match_seg = Match(qsegment, qmodel); 
printf("\n match.seq = '/,d", match.seg); 
if (match.seg == -1) 
break; 

printf("\n qmodel. Po sit .X = '/.f",qmodel.Posit .X) 
printf("\n qmodel. Posit .Y = '/.f",qmodel.Posit .Y) 
printf("\n qmodel.Theta = '/.f",qmodel.Theta*RAD) 

printf("\n qsegment. Pos it. X = '/,f ".qsegment .Posit .X) ; 

212 



printf("\n qsegment .Posit .Y = '/.f ",qsegment .Posit .Y) ; 
printf("\n qsegment .Theta = '/.f',qsegment .Theta*RAD) ; 

CorrectOdometryError(qsegment, qmodel); 

reference_path = compose(&reference_path, &delta2); 

nbline(reference_path); 

reference_path = compose(&reference_path, &delta3); 

if(lap_count == (laps-1)) 

bline(reference_path); 

else 

nbline(reference_path); 

++lap_count; 

} 

waitMotionEndO ; 
DisableLinearFitting(S270); 

} 

/je*************************************************** 

Function : user3() 
Purpose  : polygon tracking 
Parameters: void 
Returns  : void 
Comments : Aug. 20, 1996 Mahmoud Wahdan 

void user3() 

{ 
double sigma, speed,clearance ; 
CONFIGURATION q; 

createPolyModelO,' 

213 



printf("\nlnput desired speed: "); 

speed = GetRealO; 
setLinVellmm(speed); 

printf("\nlnput desired clearance: "); 
clearance -  GetRealO; 
setClearancelmm(clearance); 

printf("\nlnput desired smoothness: "); 

sigma = GetRealO; 

setSigmalmm(sigma); 

MotionLog(NULL,Frequency,0); 

q » defineConfig(90.0, 450.0, -HPI, 0.0); 

setRobotConfiglmm(q); 

polygonTrackingO ; 

} 

Function : user4() 
Purpose  : For Polygon Tracking motion 
Parameters: void 
Returns  : void 
Comments  : Aug. 20, 1996 Mahmoud Wahdan 

««««lie«**********************************************/ 

void user4() 

{ 
double sigma, speed,clearance ; 
CONFIGURATION q; 

PATH.ELEMENT   path; 

createPolyModelO ; 

printf("\nlnput desired speed: "); 
speed = GetRealO; 

setLinVellmm(speed); 

214 



printf("\nlnput desired clearance: "); 
clearance = GetRealO; 

setClearancelmm(clearance); 

printf("\nlnput desired smoothness: "); 
sigma = GetRealO; 
setSigmalmm(sigma); 

Mot i onLog(NULL,FREQUENCY,0); 

q = defineConfig(90.0, 450.0, -HPI, 0.0); 

setRobotConfiglmm(q); 

motionTrackingO ; 

} 

215 



216 



LIST OF REFERENCES 

I] R. C. Arkin. The impact of cybernetics on the design of a mobile robot system: A 
case study. IEEE Transactions on System, Man, and Cybernetics, 20:1245-1257, 
1990. 

2] J. Barraquand and J. C. Latombe. On non-holonomic mobile robots and optimal 
maneuvering. Proc. of the J^th IEEE International Symposition on Intelligent 
Control, Albany, NY, 1989. 

3] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed rep- 
resentation approach. Internat. J. Robot. Res., 10:2628-649, 1991. 

4]    N. Bloch. Abstract Algebra with Applications. Prentice Hall, 1987. 

5] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal 
of Robotics and Automation, Vol. RA-2 N 1, 1986. 

6] C. E. Buckley. The application of continuum methods to path planning. Ph.D. 
Dissertation, Stanford University, CA, August 1985. 

7] J. Budenske and M. Gina. Achieving goals through interaction with sensors and 
actuators. Proceedings of the IEEE International Conference on Robotics and 
Automation, pages 903-908, 1992. 

8] J. Budenske and M. Gina. Why is it so difficult for a robot to pass through 
a doorway. Proceedings of the IEEE International Conference on Robotics and 
Automation, pages 3124-3129, 1994. 

9] C. L. Chuang. Layered safe motion planning for autonomous vehicles. Ph.D. 
Dissertation, Naval Postgraduate School, Monterey, California, September 1995. 

10] J. Connell. Sss: A hybrid architecture applied to robot navigation. Proc. IEEE 
Conf. Robotics and Automation, pages 2719-2725, 1992. 

II] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. 
The MIT Press, 1990. 

12] I. Cox. Blanche - an experiment in guidance and navigation of an autonomous 
robot vehicle. IEEE Transactions on Robotics and Automation, 7:193-204, 1991. 

13] F. H. Croom. Basic Concepts of Algebraic Topology. Springer-Verlag, 1978. 

14] J. L. Crowley. World modeling and position estimation for a mobile robot using 
ultrasonic ranging. Proc. of IEEE International Conf. on Robotics and Automa- 
tion, Scottsdale, Arizona, pages 674-680, May 1989. 

217 



[15] F. Dierks. Freie Navigation Autonomer Fahrzeuge, In: P. Levi, T. Bräunt, eis., 
Autonome Mobile Systeme 1994- Springer-Verlag, Berlin, 1994. 

[16] M. Drumheller. Mobile robot localization using sonar. Tech. Report A.I.Memo 
826, MIT, AI Laboratory, Cambridge, MA, 1985. 

[17] R. Hollier (ed.). Automated Guided Vehicle Systems. Springer-Verlag, Berlin, 
1987. 

[18] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of 
Robotics and Automation, RA-3(3), pages 674-680, 1987. 

[19] J. Evans, B. Krishnamurthy, B. Barrows, and T. Skewis. Handling real-world 
motion planning: A hospital transport robot. IEEE Control Systems Magazine, 
12:15-20, 1992. 

[20] H. Everett and E. Stitz. Survey of Collision Avoidance and Ranging Sensors 
for Mobile Robots. Naval Command, Control and Ocean Surveillance Center, 
Technicle Note 1194, Update 1, December 1992. 

[21] R. J. Firby. Adaptive execution in complex dynamic worlds. Ph.D. Dissertation, 
Yala University, CT, May 1989. 

[22] C. Floyd, Y. Kanayama, and C. Magrino. Underwater obstacle recognition using 
a low-resolution sonar. Proc. Seventh International Symposium on Unmanned 
Untethered Submersible Technology, September 1991. 

[23] T. Fraichard and C. Laugier. Path-velocity decomposition revisited and applied 
to dynamics trajectory planning. IEEE int. Conf. on Robotics and Automation, 
pages 40-45, 1993. 

[24] J. B. Fraleigh. A First Course in Abtract Algebra. Addison-Wesley Pub., 1993. 

[25] T. W. Gamelin and R. E. Greene. Introduction to Topology. Saunders College 
Pub., 1983. 

[26] B. Gray. Homotopy Theory: An Introduction to Algebraic Topology. The Aca- 
demic Press, 1975. 

[27] V. Guillemin and A. Pollack. Differential Topology. Prentic Hall, 1974. 

[28] I. Guttman and S. S. Wilkes. Introduction to Engineering Statistics. John Wiley 
x Sons, Inc., New York, 1965. 

[29] A. Holenstein, M. Müller, and E. Badreddin. Mobile robot localization in struc- 
tured environment cluttered with obstacles. IEEE Conf. of Robotics and Au- 
tomation, pages 2576-2582, May 1992. 

218 



[30] J. Horn and G. Schmidt. Continuous localization for long-range indoor navigation 
of mobile robots. IEEE International Conf. On Robotics and Automation, pages 
387-394, 1995. 

[31] C. Hsiung. A First Course in Differential Geometry. John Wiley and Sons, 1981. 

[32] Y. K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM Computing 
Surveys, Surv., 24(3), pages 3219-291, 1992. 

[33] Y. K. Hwang, P. C. Chen, A. A. Maciejewski, and D. D. Neidigk. A global motion 
planner for curve-tracing robots. IEEE int. Conf. on Robotics and Automation, 
pages 2-7, 1994. 

[34] Inc. Ironies. IV-SPARC-25A/33A VMEbus Single Board Super Computer and 
Multiprocessing Engine—User's Manual. Ironies, Inc., New York, 1992. 

[35] Y. Kanayama. Two dimensional wheeled vehicle kinematics. IEEE Int. Conf 
on Robotics and Automation, in San Diego, California, pages 3079-3084, May 
1994. 

[36] Y. Kanayama. Introduction to theoretical robotics. Lecture Notes of the Ad- 
vanced Robotics Course, Department of Computer Science, Naval Postgraduate 
School, 1996. 

[37] Y. Kanayama and B. I. Hartman. Smooth local path planning for autonomous 
vehicles. IEEE int. Conf. on Robotics and Automation, pages 1265-1270, 1989. 

[38] Y. Kanayama, K. Kimura, F. Miyazaki, and T. Noguchi. A stable tracking 
control method for an autonomous mobile robot. IEEE int. Conf. on Robotics 
and Automation, pages 1315-1317, 1988. 

[39] Y. Kanayama, D. L. MacPherson, and G. W. Krahn. Two dimensional trans- 
formations and its application to vehicle motion control and analysis. Proc. 
of International Conf. on Robotics and Automation, in Atlanta, Georgia, pages 
13-18, May 1993. 

[40] Y. Kanayama and T. Noguchi. Spatial learning by an autonomous mobile robot 
with ultrasonic sensors. University of California Santa Barbara Dept. of Comp. 
Sei. Technical Report TRCS89-06, February 1989. 

[41] Y. Kanayama and M. Onishi. Locomotion functions for a mobile robot language, 
mml. IEEE int. Conf. on Robotics and Automation, pages 1110-1115, 1991. 

[42] O. Khatib. Teal-time obstacle avoidance for manipulators and mobile robots. 
International Journal of Robotics Research, 5:90-98, September 1986. 

[43] J. R. Kirkwood. An Introduction to Analysis. PWS-KENT Pub. Company, 1989. 

219 



[44] R. Klein. Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer 
Science. Springer-Verlag, 1987. 

[45] T. M. Knasel.  Mobile robotics - state of the art review.  International Journal 
of Robotics Research, 1, 1986. 

[46] A. Kosaka and A. Kak. Fast vision-guided mobile robot navigation using model- 
based reasoning and prediction of uncertainties. Proc. 1992IEEE/RSJ Int. Conf. 
on Intelligent Robots and Systems, Raleigh, North Carolina, pages 2177-2186, 
1992. 

[47] J. G. Kovalchik. Layered Motion Planning for Autonomous Mobile Robots using 
Free Space Decomposition and Steering Functions. Ph.D. Dissertation, Naval 
Postgraduate School, Monterey, California, 1995. 

[48] D. J. Kriegman, E. Triendl, and T.O. Binford. Stereo vision and navigation 
in building for mobile robots. IEEE Trans, on Robotics and Automation, 5(6), 
December 1989. 

[49] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991. 

[50] L. Laumond. Feasible trajectory for mobile robots with kinematic and environ- 
ment constraints. Proc. of the International Conf. on Intelligent Autonomous 
Systems, Amsterdam, The Netherlands, pages 346-354, 1986. 

[51] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking ge- 
ometric beacons. IEEE Transactions on Robotics and Automation, 7:376-382, 
1991. 

[52] J. T. Lochner. Analysis and Improvement of an Ultrasonic Sonar System on an 
Autonomous Mobile Robot. Master Thesis, Naval Postgraduate School, Monterey, 
California, 1994. 

[53] T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE 
Transaction on Computers, 32:108-119, 1983. 

[54] T. Lozano-Perez and M. A. Wesley. An algorithm for planning collision-free 
paths among polyhedral obstacles. Comm. ACM, 22:165-175, 1979. 

[55] D. L. Macpherson. Automated Cartography by an Autonomous Mobile Robot 
using Ultrasonic Range Finders. Ph.D. Dissertation, Naval Postgraduate School, 
Monterey, California, 1993. 

[56] L. Matthies and S. A. Shafer. Error modeling in stereo navigation. IEEE Journal 
of Robotics and Automation, RA-3(3), pages 239-1.548, 1987. 

220 



[57] H. M. Moravec. Obstacle Avoidance and Navigation in the Real World by a 
Seeing Robot Rover. Stanford AI Lab Memo AIM-340, 1980. 

[58] R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. The 
MIT Press, 1984. 

[59] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. 
Springer-Verlag, 1985. 

[60] K. A. Ross. Elementary Analysis: The Theory of Calculus. Springer-Verlag, 
1980. 

[61] S. R. Sherfey. A Mobile Robot Sonar System. Master Thesis, Naval Postgraduate 
School, Monterey, California, 1991. 

[62] T. Skewis and V. Lumelsky. Experiments with a mobile robot operating in a clut- 
tered unknown environment. Proceedings of the IEEE International Conference 
on Robotics and Automation, pages 1482-1482, May 1992. 

[63] M. Spivak. A Comprehensive Introduction to Differential Geometry, Vol 1 and 
2. Publish or Perish, Inc., Berkeley, CA, 1979. 

[64] S. H. Suh and K. G. Shin. A variational dynamic programming approach to 
robot-path planning with a distance-safety criterion. IEEE Journal of Robotics 
and Automation, 4:334-349, 1988. 

[65] F. Vacherand. Fast local path planner in certainty grid. IEEE int. Conf on 
Robotics and Automation, pages 2132-2137, 1994. 

[66] Y. Watanabe and S. Yuta. Position estimation of mobile robots with internal and 
external sensors using uncertainty evolution technique. Proc. of IEEE Interna- 
tional Conf. on Robotics and Automation,Scottsdale, Arizona, pages 2011-2016, 
May 1990. 

[67] D. Zwillinger. Standard Mathematical Tables and Formulae. CRC Press, 1996. 

221 



222 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
8725 John J. Kingman Road., Ste 0922 
Ft. Belvoir, VA 22060-6218 

2. Dudley Knox Library 
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

3. Chairman, Code CS 
Department of Computer Science 
Naval Postgraduate School 
Monterey, CA 93943-5101 

4. Professor Yutaka Kanayama, Code CS/Ka 
Department of Computer Science 
Naval Postgraduate School 
Monterey, CA 93943-5101 

5. Professor C. Thomas Wu, Code CS/Wq 
Department of Computer Science 
Naval Postgraduate School 
Monterey, CA 93943-5101 

6. Professor Cynthia Irvine, Code CS/Ir 
Department of Computer Science 
Naval Postgraduate School 
Monterey, CA 93943-5101 

7. Professor Craig Rasmussen, Code MA/Ra 
Department of Mathematics 
Naval Postgraduate School 
Monterey, CA 93943-5101 

8. Professor Fariba Fahroo, Code MA/Ff 
Department of Mathematics 
Naval Postgraduate School 
Monterey, CA 93943-5101 

223 



9. Professor Xiaoping Yuri, Code ECE/Yu 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 93943-5101 

10. Professor Chirs Frenzen, Code MA/Fr 
Department of Mathematics 
Naval Postgraduate School 
Monterey, CA 93943-5101 

11. Professor Harold Fredricksen, Code MA/Fs 
Department of Mathematics 
Naval Postgraduate School 
Monterey, CA 93943-5101 

12. LTC. Nabil Khalil, Code ECE/Ph 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 93943-5101 

13. Maj. Khaled Morsy, Code CS/Ph 
Department of Computer Science 
Naval Postgraduate School 
Monterey, CA 93943-5101 

14. Maj. Ashraf Mamdouh, Code ECE/Ph 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 93943-5101 

15. Egyptian Military Attache 
2308 Tracy Place NW 
Washington, DC 20008 

16. Egyptian Armament Authority - Training Department 
c/o American Embassy (Cairo, Egypt) 
Office of Military Cooperation 
Box 29 (TNG) 
FPO, NY 09527-0051 

17. Military Technical College (Egypt) 
c/o American Embassy (Cairo, Egypt) 
Office of Military Cooperation 
Box 29 (TNG) 
FPO, NY 09527-0051 

224 



18. Military Research Center (Egypt) 
c/o American Embassy (Cairo, Egypt) 
Office of Military Cooperation 
Box 29 (TNG) 
FPO, NY 09527-0051 

19. COL. Mahmoud Wahdan (Egypt) 
5 El-Shrif Street//Roxy Cario//Egypt 

225 


